如圖,三棱錐A-BCD是長方體木料的一角,現(xiàn)欲從頂點(diǎn)A沿著底面BCD的垂線方向鉆孔,則出口位置是三角形BCD的    (填“重心、垂心、內(nèi)心、外心”).
【答案】分析:三棱錐A-BCD的三條側(cè)棱兩兩垂直,一條棱就垂直于平面上的在棱錐底面的一條邊,過頂點(diǎn)向底面做垂線,連接底面頂點(diǎn)和垂足,根據(jù)三垂線定理得到底面的高線,得到垂心.
解答:解:三棱錐A-BCD的三條側(cè)棱兩兩垂直,
則一條棱就垂直于另兩條棱組成的平面,
則這條棱就垂直于平面上的在棱錐底面的一條邊,
過頂點(diǎn)向底面做垂線,連接底面頂點(diǎn)和垂足,根據(jù)三垂線定理得到底面的高線,
∴射影必是底面三角形的垂心,
故答案為:垂心.
點(diǎn)評(píng):本題考查三角形的垂心,考查線面垂直的判定定理和性質(zhì)定理等基礎(chǔ)知識(shí),考查空間想象能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,三棱錐A-BCD中,AB⊥底面BCD,BC⊥CD,且AB=BC=1,CD=2,點(diǎn)E為CD的中點(diǎn),則AE的長為(  )
A、
2
B、
3
C、2
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱錐A-BCD,BC=3,BD=4,CD=5,AD⊥BC,E,F(xiàn)分別是棱AB,CD的中點(diǎn),連接CE,G為CE上一點(diǎn).
(1)GF∥平面ABD,求
CGGE
的值;
(2)求證:DE⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱錐A-BCD的底面是等腰直角三角形,AB⊥平面BCD,AB=BC=BD=2,E是棱CD上的任意一點(diǎn),F(xiàn)、G分別是AC、BC的中點(diǎn),則在下面的命題中:①平面ABE⊥平面BCD;②平面EFG∥平面ABD;③四面體FECG的體積最大值是
1
3
,真命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•濱州一模)如圖,三棱錐A-BCD中,AD、BC、CD兩兩互相垂直,且AB=13,BC=3,CD=4,M、N分別為AB、AC的中點(diǎn).
(1)求證:BC∥平面MND;
(2)求證:平面MND⊥平面ACD;
(3)求三棱錐A-MND的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,三棱錐A-BCD是正三棱錐,O為底面BCD的中心,以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)D、OA為y、z軸建立如圖所示的空間直角坐標(biāo)系O-xyz,若|
OA
|=|
BC
|=12
,則線段AC的中點(diǎn)坐標(biāo)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案