精英家教網(wǎng)已知三棱錐S-ABC中,底面ABC為邊長等于2的等邊三角形,SA⊥底面ABC,SA=3,那么直線SB與平面SAC所成角的正弦值為
 
分析:過B作BD垂直于AC于D,連接SD,由已知中底面ABC為邊長等于2的等邊三角形,SA⊥底面ABC,易得∠BSD即為直線SB與平面SAC所成角,根據(jù)SA=3,使用勾股定理求出三角形SBD中各邊的長后,解三角形SBD即可得到.
解答:解:過B作BD垂直于AC于D,連接SD
∵底面ABC為邊長等于2的等邊三角形,SA⊥底面ABC,
∴BD⊥AC,SA⊥BD,AC∩SA=A
則BD⊥平面SAC,
則∠BSD即為直線SB與平面SAC所成角
∵SA=3,
∴SD=
10
,BD=
3
,SB=
13

在Rt∠SBD中,sin∠BSD=
BD
SB
=
39
13

故答案為:
39
13
點(diǎn)評:本題考查的知知識點(diǎn)是直線與平面所成的角,其中求出直線與平面夾角的平面角,將線面夾角問題轉(zhuǎn)化為解三角形問題是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐S-ABC的各頂點(diǎn)都在一個半徑為r的球面上,球心O在AB上,SO⊥底面ABC,AC=
2
r
,則球的體積與三棱錐體積之比是(  )
A、πB、2πC、3πD、4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,△ABC是邊長為1的正三角形,SC為球O的直徑,且SC=2;則此棱錐的體積為
2
6
2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐S-ABC的三條側(cè)棱兩兩垂直,且SA=2,SB=SC=4,若點(diǎn)P到S、A、B、C這四點(diǎn)的距離都是同一個值,則這個值是
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•蘭州一模)已知三棱錐S-ABC的所有頂點(diǎn)都在以O(shè)為球心的球面上,△ABC是邊長為1的正三角形,SC為球O的直徑,若三棱錐S-ABC的體積為
2
6
,則球O的表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐S-ABC的四個頂點(diǎn)在以O(shè)為球心的同一球面上,且SA=SB=SC=AB,∠ACB=90°,則當(dāng)球的表面積為400π時,點(diǎn)O到平面ABC的距離為( 。

查看答案和解析>>

同步練習(xí)冊答案