(13分)已知函數(shù)
(1)當(dāng)時(shí),證明:函數(shù)只有一個(gè)零點(diǎn);
(2)若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍;
解析:(Ⅰ)當(dāng)a=1時(shí),,其定義域是,
………(1分)
令,即,解得或.
,舍去.
當(dāng)時(shí),;當(dāng)時(shí),.
∴函數(shù)在區(qū)間(0,1)上單調(diào)遞增,在區(qū)間上單調(diào)遞減(4分)
∴當(dāng)x=1時(shí),函數(shù)取得最大值,其值為.
當(dāng)時(shí),,即.
∴函數(shù)只有一個(gè)零點(diǎn). ………………(6分)
(Ⅱ)法一:因?yàn)?IMG src='http://thumb.zyjl.cn/pic1/img/20090527/20090527095952020.gif' width=148 height=24>其定義域?yàn)?IMG src='http://thumb.zyjl.cn/pic1/img/20090527/20090527095951002.gif' width=49 height=21>,
所以……(7分)
①當(dāng)a=0時(shí),在區(qū)間上為增函數(shù),不合題意(8分)
②當(dāng)a>0時(shí),等價(jià)于,即.
此時(shí)的單調(diào)遞減區(qū)間為.
依題意,得解之得. …………………(10分)
③當(dāng)a<0時(shí),等價(jià)于,即?
此時(shí)的單調(diào)遞減區(qū)間為,得
綜上,實(shí)數(shù)a的取值范圍是 ………(13分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分12分)
已知函數(shù)。
(1):當(dāng)時(shí),求函數(shù)的極小值;
(2):試討論函數(shù)零點(diǎn)的個(gè)數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省福州市高三畢業(yè)班質(zhì)檢理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)設(shè)的內(nèi)角的對(duì)應(yīng)邊分別為,且若向量與向量共線,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省東莞市第三次月考高一數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的最大值和最小值;
(2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三下學(xué)期假期檢測(cè)文科數(shù)學(xué)試卷 題型:解答題
已知函數(shù).().
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若對(duì),有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年吉林省高三上學(xué)期第二次教學(xué)質(zhì)量檢測(cè)文科數(shù)學(xué)卷 題型:解答題
已知函數(shù)
(1)當(dāng)時(shí),求的極小值;
(2)設(shè),求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com