如圖,在二面角α-l-β中,A、B∈α,C、D∈l,ABCD為矩形,P∈β,PA⊥α,且PA=AD,M、N依次是AB、PC的中點(diǎn).
(1)求二面角α-l-β的大;
(2)求證:MN⊥AB;
(3)求異面直線PA與MN所成角的大。
解析:(1)連PD,∵ABCD為矩形,∴AD⊥DC,即AD⊥l.又PA⊥l,∴PD⊥l. ∵P、D∈β,則∠PDA為二面角α-l-β的平面角. ∵PA⊥AD,PA=AD,∴ΔPAD是等腰直角三角形,∴∠PDA=45°,即二面角α-l-β的大小為45°. (2)過M作ME∥AD,交CD于E,連結(jié)NE,則ME⊥CD,NE⊥CD,因此,CD⊥平面MNE,∴CD⊥MN.∵AB∥CD,∴MN⊥AB (3)過N作NF∥CD,交PD于F,則F為PD的中點(diǎn).連結(jié)AF,則AF為∠PAD的角平線,∴∠FAD=45°,而AF∥MN,∴異面直線PA與MN所成的45°角. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
17 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
求證:sin2α+sin2β=sin2θ.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com