13.已知向量 $\overrightarrow{a}$=(-2,1),$\overrightarrow$=(x,2),若$\overrightarrow{a}$⊥$\overrightarrow$,則x的值等于( 。
A.1B.-1C.-4D.4

分析 利用向量的垂直關(guān)系,列出方程求解即可.

解答 解:向量 $\overrightarrow{a}$=(-2,1),$\overrightarrow$=(x,2),若$\overrightarrow{a}$⊥$\overrightarrow$,
可得-2x+2=0,解得x=1.
故選:A.

點(diǎn)評(píng) 本題考查向量的垂直的充要條件的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0
(1)求證:對(duì)任意m∈R直線l與圓C總有兩個(gè)交點(diǎn)A,B;
(2)若定點(diǎn)P(1,1)分弦AB為$|AP|=\frac{1}{2}|PB|$,求此直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=$\sqrt{x+8}$+$\sqrt{3-x}$的定義域是[-8,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)命題p:?n0∈N,n02>2n0,則¬p為(  )
A.?n∉N,n2≤2nB.$?{n_0}∈N,{n_0}^2≤{2^{n_0}}$
C.?n∈N,n2≤2nD.$?{n_0}∉N,{n_0}^2≤{2^{n_0}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知集合A由a-1,2a2+5a+1,a2+1組成,且-2∈A,求a=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.有5張卡片上分別寫有數(shù)字1,2,3,4,5從這5張卡片中隨機(jī)抽取2張,那么取出的2張卡片上的數(shù)字之積為偶數(shù)的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{7}{10}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知a=$\sqrt{0.5}$,b=20.5,c=0.50.2,則a,b,c三者的大小關(guān)系是(  )
A.b>c>aB.b>a>cC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{ax-1}{x+1}$.
(1)若a=2,利用定義法證明:函數(shù)f(x)在(-∞,-1)上是增函數(shù);
(2)若函數(shù)f(x)在區(qū)間(-∞,-1)上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知{an}為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,則數(shù)列{an}的公差d=( 。
A.-2B.-1C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案