已知點(diǎn)A(2,5),直線l:2x-3y-2=0,點(diǎn)M與點(diǎn)A關(guān)于l對(duì)稱,
(1)求點(diǎn)M的坐標(biāo);
(2)若點(diǎn)B,C分別在直線l與y軸上運(yùn)動(dòng),求△ABC周長(zhǎng)的最小值.
考點(diǎn):與直線關(guān)于點(diǎn)、直線對(duì)稱的直線方程,兩點(diǎn)間的距離公式
專(zhuān)題:直線與圓
分析:(1)設(shè)點(diǎn)M的坐標(biāo)為(a,b),由垂直平分可得
2•
a+2
2
-3•
b+5
2
-2=0
b-5
a-2
2
3
=-1
,解方程組可得;
(2)由(1)知點(diǎn)A關(guān)于l的對(duì)稱點(diǎn)M(6,-1),又可得A關(guān)于y軸的對(duì)稱點(diǎn)N(-2,5),由對(duì)稱性可知△ABC周長(zhǎng)的最小值即為MN的距離,由距離公式可得.
解答: 解:(1)設(shè)點(diǎn)M的坐標(biāo)為(a,b),
2•
a+2
2
-3•
b+5
2
-2=0
b-5
a-2
2
3
=-1
,
化簡(jiǎn)可得
2a-3b-15=0
3a+2b-16=0
,
解得
a=6
b=-1
,即M坐標(biāo)為(6,-1);
(2)由(1)知點(diǎn)A關(guān)于l的對(duì)稱點(diǎn)M(6,-1),
又可得A關(guān)于y軸的對(duì)稱點(diǎn)N(-2,5),
由對(duì)稱性可知△ABC周長(zhǎng)c=AB+BC+CA當(dāng)M、B、C、N四點(diǎn)共線時(shí)取值最小值,
此時(shí)c=MB+BC+CN=MN=
(-2-6)2+(5+1)2
=10
點(diǎn)評(píng):本題考查直線的對(duì)稱性,涉及方程組的解法和垂直關(guān)系,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的S是( 。
A、10B、15C、20D、35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(x-
π
3
)(x∈[0,2π)),若存在實(shí)數(shù)x1x2,滿足f(x1)=f(x2)(x1≠x2),則x1+x2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
3
,則雙曲線的漸近線方程為( 。
A、y=±2x
B、y=±
2
2
x
C、y=±
1
2
x
D、y=±
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知非零向量
a
,
b
,若|
a
|=|
b
|=1,且
a
b
,又知(2
a
+3
b
)⊥(k
a
-4
b
),則實(shí)數(shù)k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x2-4x-5|-k,x∈R,k為常數(shù),且k∈R
(1)在區(qū)間[-2,6]上畫(huà)出函數(shù)f(x)當(dāng)k=0時(shí)的圖象;
(2)討論函數(shù)f(x)的零點(diǎn)個(gè)數(shù)隨k的取值的變化情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,網(wǎng)格紙的各小格都是正方形,粗實(shí)線畫(huà)出的是一個(gè)錐體的側(cè)視圖和俯視圖,則該錐體的正視圖可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=log2(x2-4x+a)(a>4),若所有點(diǎn)(s,f(t))(s,t∈[1,3])構(gòu)成一個(gè)正方形區(qū)域,則函數(shù)f(x)的單調(diào)增區(qū)間為( 。
A、[1,2]
B、[2,3]
C、(-∞,2]
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
m
=(sinx,sinx),
n
=(sinx,-
3
cosx,)函數(shù)f(x)=
1
2
-
m
n

(Ⅰ)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的值域;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,A為銳角,若sin(2A-
π
6
)-f(A)=
1
2
,b+c=7,△ABC的面積為2
3
,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案