已知球面上有三點(diǎn)A、B.C,此三點(diǎn)構(gòu)成一個(gè)邊長(zhǎng)為1的等邊三角形,球心到平面ABC的距離等于球半徑的
1
3
,則球半徑是(  )
分析:根據(jù)△ABC是一個(gè)邊長(zhǎng)為l的等邊三角形,得到它的外心到頂點(diǎn)的距離,即經(jīng)過(guò)A、B、C的球小圓半徑.再根據(jù)球心到平面ABC的距離等于球半徑的 
1
3
,結(jié)合球的截面圓性質(zhì)和勾股定理建立關(guān)系式,解之即得球半徑的值.
解答:解:∵△ABC是一個(gè)邊長(zhǎng)為l的等邊三角形,∴△ABC的高AD=
3
2

設(shè)△ABC的外接圓圓心設(shè)為O',得到AO'=
2
3
AD=
3
3

再設(shè)球心為O,因?yàn)榍蛐腛到平面ABC的距離等于球半徑的
1
3
,
所以O(shè)O'=
1
3
OA,
Rt△OO'A中,O'A2+OO'2=OA2,即(
3
3
)2+
1
9
OA2=OA2
8
9
OA2=
1
3
,故OA=
6
4
,即球半徑是
6
4

故選:C.
點(diǎn)評(píng):本題給出球截面圓的內(nèi)接等邊三角形邊長(zhǎng)和球心到截面的距離,求它的半徑,著重考查了球的截面圓的性質(zhì)和空間距離計(jì)算的知識(shí)點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知球面上有三點(diǎn)A、B、C,此三點(diǎn)構(gòu)成一個(gè)邊長(zhǎng)為l的等邊三角形,球心到平面ABC的距離等于球半徑
1
3
,則球半徑是
6
4
6
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知球面上有三點(diǎn)A,B,C且AB=6cm,BC=8cm,CA=10cm,若球心到平面ABC距離為7cm,則此球的表面積為
296π
296π
cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知球面上有三點(diǎn)A、B、C,AB=6cm,BC=8cm,AC=10cm,且球心O到平面ABC的距離為12,則球的半徑為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年四川省成都市七校協(xié)作體高二(下)期中數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知球面上有三點(diǎn)A,B,C且AB=6cm,BC=8cm,CA=10cm,若球心到平面ABC距離為7cm,則此球的表面積為    cm3

查看答案和解析>>

同步練習(xí)冊(cè)答案