函數(shù)的零點所在區(qū)間為
A.B.C.D.
C

試題分析:據(jù)函數(shù)零點的判定定理,判斷f(1),f(),的符號,即可求得結(jié)論.根據(jù)題意,由于,根據(jù)零點存在性定理可知零點的區(qū)間大致在,故選C
點評:考查函數(shù)的零點的判定定理,以及學(xué)生的計算能力.解答關(guān)鍵是熟悉函數(shù)的零點存在性定理,此題是基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)滿足,且時,,函數(shù),則函數(shù)在區(qū)間內(nèi)的零點的個數(shù)為
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)是以2為周期的偶函數(shù),當x∈[0, 1]時,f(x)=x,那么在區(qū)間[-1,3]內(nèi)關(guān)于x的方程f(x)=kx+k+1(k∈R,k≠-1)的根的個數(shù)
A.不可能有3個B.最少有1個,最多有4個
C.最少有1個,最多有3個D.最少有2個,最多有4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)有四個不同的零點,則實數(shù)的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)在區(qū)間上(    )
A.沒有零點B.只有一個零點C.有兩個零點 D.以上選項都錯誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(b為常數(shù)).
(1)函數(shù)f(x)的圖像在點(1,f(1))處的切線與g(x)的圖像相切,求實數(shù)b的值;
(2)設(shè)h(x)=f(x)+g(x),若函數(shù)h(x)在定義域上存在單調(diào)減區(qū)間,求實數(shù)b 的取值范圍;
(3)若b>1,對于區(qū)間[1,2]上的任意兩個不相等的實數(shù)x1,x2,都有|f(x1)-f(x2)|> |g(x1)-g(x2)|成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知方程的解所在區(qū)間為,則=      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線與曲線有公共交點,則的最大值為
A.1 B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)的零點為,則不等式的最大整數(shù)解是    .

查看答案和解析>>

同步練習(xí)冊答案