已知向量
a
b
的夾角為120°,且|
a
|=|
b
|=1,
c
=
1
2
a
+
1
4
b
,則
a
c
的夾角大小為
 
考點:平面向量數(shù)量積的運算
專題:平面向量及應用
分析:向量
a
b
的夾角為120°,且|
a
|=|
b
|=1,可得
a
b
=-
1
2
.
a
c
=
1
2
a
2
+
1
4
a
b
=
3
8
.|
c
|
=
1
4
a
2
+
1
16
b
2
+
1
4
a
b
.利用cos<
a
,
c
=
a
c
|
a
||
c
|
即可得出.
解答: 解:∵向量
a
b
的夾角為120°,且|
a
|=|
b
|=1,
a
b
=cos120°=-
1
2

a
c
=
1
2
a
2
+
1
4
a
b
=
1
2
+
1
4
×(-
1
2
)
=
3
8

|
c
|
=
1
4
a
2
+
1
16
b
2
+
1
4
a
b
=
1
4
+
1
16
-
1
4
×
1
2
=
3
4

cos<
a
,
c
=
a
c
|
a
||
c
|
=
3
8
3
4
=
3
2

a
c
的夾角大小為30°.
故答案為:30°.
點評:本題考查了向量數(shù)量積運算性質(zhì)、向量夾角公式,考查了推理能力與計算能力,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

有一根長為5cm,底面半徑為0.5cm的圓柱形鐵管,用一段鐵絲在鐵管上纏繞4圈,并使鐵絲的兩個端點落在圓柱的同一母線的兩端,求鐵絲的最短長度是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax-
1
x
,且f(-2)=-
3
2

(1)求f(x)的解析式;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性并加以證明;
(3)求函數(shù)f(x)在[
1
2
,2]
上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了完成綠化任務,某林區(qū)改變植樹計劃,第一年的植物增長率為200%,以后每年的植樹增長率都是前一年植樹增長率的
1
2

(1)假設成活率為100%,經(jīng)過4年后,林區(qū)的樹木數(shù)量是原來樹木數(shù)量的多少倍?
(2)如果每年都有5%的樹木死亡,那么經(jīng)過多少年后,林區(qū)的樹木數(shù)量開始下降?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
,
b
滿足|
a
|=3,|
b
|=2
3
,且
a
⊥(
a
+
b
),則向量
a
b
的夾角是( 。
A、90°B、120°
C、135°D、150°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,2),
b
=(2x,-3),若
a
⊥(
a
+
b
),則x=( 。
A、3
B、-
1
2
C、-3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}中,a2+a3+a4=28,且a3+2是a2,a4的等差中項,
(1)求an
(2)設bn=log
1
2
an,Sn=b1+b2+…+bn,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知,
m
=(2cosωx+2
3
sinωx,1),
n
=(cosωx,-2),若函數(shù)f(x)=
m
n
的圖象的一個對稱中心為(
π
12
,-1),其中|ω|≤1.
(1)求函數(shù)f(x)的解析式;
(2)已知a,b,c分別為△ABC的三個內(nèi)角A,B,C的對應的邊長,若f(
A
2
)=-2,且a=2,b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y,z均為實數(shù),
(1)x+y+z=1,求證:
3x+1
+
3y+2
+
3z+3
≤3
3
;
(2)若x+2y+3z=6,求x2+y2+z2的最小值.

查看答案和解析>>

同步練習冊答案