已知拋物線定點為拋物線的焦點,為拋物線上的一個動點,則的最小值為                    

 

【答案】

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知平面上兩定點C(-1,0),D(1,0)和一定直線l:x=-4,P為該平面上一動點,作PQ⊥l,垂足為Q,且(
PQ
+2
PC
)•(
PQ
-2
PC
)=0

(1)問點P在什么曲線上,并求出曲線的軌跡方程M;
(2)又已知點A為拋物線y2=2px(p>0)上一點,直線DA與曲線M的交點B不在y軸的右側,且點B不在x軸上,并滿足
AB
=2
DA
,求p
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知離心率為
2
2
的橢圓C1
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦點分別為F1、F2,橢圓C1與拋物線C2:y2=-x的交點的橫坐標為
-2.
(1)求橢圓的標準方程;
(2)如果直線l:y=kx+m與橢圓相交于P1、P2兩點,設直線P1F1與P2F1的傾斜角分別為α,β,當α+β=π時,求證:直線l必過定點.

查看答案和解析>>

科目:高中數(shù)學 來源:江西師大附中2010屆高三第三次模擬考試數(shù)學(理) 題型:解答題

已知平面上兩定點C1,0),D(1,0)和一定直線,為該平面上一動點,作,垂足為Q,且

   (1)問點在什么曲線上,并求出曲線的軌跡方程M;

   (2)又已知點A為拋物線上一點,直線DA與曲線M的交點B不在 軸的右側,且點B不在軸上,并滿足的最小值.[來源:學

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江西師大附中高考數(shù)學三模試卷(理科)(解析版) 題型:解答題

已知平面上兩定點C(-1,0),D(1,0)和一定直線l:x=-4,P為該平面上一動點,作PQ⊥l,垂足為Q,且
(1)問點P在什么曲線上,并求出曲線的軌跡方程M;
(2)又已知點A為拋物線y2=2px(p>0)上一點,直線DA與曲線M的交點B不在y軸的右側,且點B不在x軸上,并滿足的最小值.

查看答案和解析>>

同步練習冊答案