11.一個幾何體的三視圖如圖所示,那么這個幾何體的表面積是16+2$\sqrt{5}$,體積是6

分析 根據(jù)已知畫出幾何體的直觀圖,進(jìn)而代入柱體體積和表面積公式,可得答案.

解答 解:由已知中三視圖,可得幾何體的直觀圖如下圖所示:

底面梯形的面積為:$\frac{1}{2}$×(1+2)×2=3,
高h(yuǎn)=2,
故棱柱的體積V=Sh=6,
底面的周長C=1+2+2+$\sqrt{{1}^{2}+{2}^{2}}$=5+$\sqrt{5}$
故側(cè)面積為:Ch=10+2$\sqrt{5}$,
故表面積S=2×3+10+2$\sqrt{5}$=16+2$\sqrt{5}$,
故答案為:16+2$\sqrt{5}$,6

點評 本題考查的知識點是棱柱的體積和表面積,簡單幾何體的直觀圖,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知隨機變量ξ服從正態(tài)分布N(2,σ2),且“P(ξ>a)=P(ξ<a)”,則關(guān)于x的二項式(x2-$\frac{a}{x}$)3的展開式的常數(shù)項為( 。
A.2B.-2C.12D.-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若變量x,y滿足約束條件$\left\{\begin{array}{l}y≥x\\ x+y≤2\\ x≥a.\end{array}\right.$且目標(biāo)函數(shù)z=2x-y的最大值是最小值的2倍,則a的值是( 。
A.$\frac{1}{2}$B.4C.3D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,已知E,F(xiàn)分別是正方形ABCD的邊AB、CD的中點,現(xiàn)將正方形沿EF折成60°的二面角,則異面角直線AE與BF所成角的余弦值是$\frac{\sqrt{5}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-2,x≤1}\\{2sin(\frac{π}{12}x)-1,x>1}\end{array}\right.$,則f[f(2)]=( 。
A.-2B.-1C.2${\;}^{\sqrt{3}-1}$-2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}滿足a1=2,an+1=2(Sn+n+1)(n∈N*),令bn=an+1.
(Ⅰ)求證:{bn}是等比數(shù)列;
(Ⅱ)記數(shù)列{nbn}的前n項和為Tn,求Tn
(Ⅲ)求證:$\frac{1}{2}$-$\frac{1}{2×{3}^{n}}$<$\frac{1}{{a}_{1}}$$+\frac{1}{{a}_{2}}$$+\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$$<\frac{11}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,在△ABC中,AB=AC=2,BC=$\sqrt{2}$,且A在平面α上,B、C在平面α的同側(cè),M為BC的中點,若△ABC在平面α上的射影是以A為直角頂點的△AB′C′,則AM與平面α所成角的正弦值的取值范圍是( 。
A.[$\frac{\sqrt{42}}{7}$,1)B.[$\frac{\sqrt{42}}{7}$,1]C.[$\frac{\sqrt{42}}{7}$,$\frac{\sqrt{14}}{4}$]D.[$\frac{\sqrt{42}}{7}$,$\frac{\sqrt{14}}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$\frac{sinα+cosα}{sinα-2cosα}$=2.
(1)求tanα;
(2)求cos($\frac{π}{2}$-α)•cos(-π+α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)f(x)是定義在R上的偶函數(shù),對x∈R,都有f(x-2)=f(x+2),且當(dāng)x∈[-2,0]時,f(x)=($\frac{1}{2}$)x-1,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有3個不同的實數(shù)根,則a的取值范圍是( 。
A.(2,3)B.$(\root{3}{3},2)$C.$(\root{3}{4},2)$D.$(\root{3}{2},3)$

查看答案和解析>>

同步練習(xí)冊答案