5.求值:$\frac{1}{\sqrt{2}-1}$-($\frac{3}{5}$)0+($\frac{9}{4}$)-0.5+$\root{4}{(\sqrt{2}-2)^{4}}$.

分析 根據指數(shù)冪的運算性質計算即可.

解答 解:原式=$\sqrt{2}$+1-1+$\frac{2}{3}$+2-$\sqrt{2}$=$\frac{8}{3}$.

點評 本題考查了指數(shù)冪的運算性質,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.設α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個命題:
①若m?α,n?β,α⊥β,則m⊥n;
②若m⊥α,n∥β且α∥β,則m⊥n;
③若α∥β,l?α,則l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中真命題的序號有②③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知是f(x)二次函數(shù),且f(x)+f(x+1)=2x2-6x+5,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.函數(shù)f(x)=-2x2+6x(-2<x≤2)的值域為(-20,$\frac{9}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若函數(shù)$f(x)=\frac{1}{(2x+1)(x-a)}$為偶函數(shù),則a=( 。
A.1B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.下列各組函數(shù)中,表示同一函數(shù)的是( 。
A.y=1,y=x0B.$y=x\;,\;y=\root{3}{x^3}$
C.$y=\sqrt{x-1}•\sqrt{x+1}\;,\;y=\sqrt{{x^2}-1}$D.$y=|x|\;,\;y={(\sqrt{x})^2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤1}\\{{x}^{2}+x-2,x>1}\end{array}\right.$,則f[$\frac{1}{f(2)}$]=$\frac{15}{16}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)f(x)=(m2-m-1)xm是冪函數(shù),且對區(qū)間(0,+∞)上任意兩個不相等的實數(shù)x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)成立,則實數(shù)m的值是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知x5=-243,那么x=(  )
A.3B.-3C.-3或3D.不存在

查看答案和解析>>

同步練習冊答案