【題目】已知函數(shù) .

1)設(shè)函數(shù),求函數(shù)在區(qū)間上的值域;

2)定義表示中較小者,設(shè)函數(shù) .

①求函數(shù)的單調(diào)區(qū)間及最值;

②若關(guān)于的方程有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍.

【答案】(1) ;(2)①.答案見解析;②. .

【解析】試題分析:1上的單調(diào)增函數(shù),故值域?yàn)?/span>.(2)計(jì)算得,由此得到的單調(diào)性和最值,而有兩個(gè)不同的根則可轉(zhuǎn)化為的函數(shù)圖像有兩個(gè)不同的交點(diǎn)去考慮.

解析:(1∵函數(shù)在區(qū)間上單調(diào)遞減,函數(shù)在區(qū)間上單調(diào)遞增,∴函數(shù)在區(qū)間上單調(diào)遞增,,所以函數(shù)在區(qū)間上的值域?yàn)?/span>.

2)當(dāng)時(shí),有,故;當(dāng)時(shí), ,故,故,1)知: 在區(qū)間上單調(diào)遞增, 在區(qū)間上單調(diào)遞減,∴函數(shù)的單調(diào)遞增區(qū)間為單調(diào)遞減區(qū)間為. 有最大值4,無(wú)最小值.

②∵上單調(diào)遞減,.又上單調(diào)遞增.∴要使方程有兩個(gè)不同的實(shí)根則需滿足.即的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù).

(1)求常數(shù)的值;

(2)設(shè),證明函數(shù)(1,+∞)上是減函數(shù);

(3)若函數(shù),且在區(qū)間[3,4]上沒有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓A:(x+1)2+y2=8,動(dòng)圓M經(jīng)過點(diǎn)B(1,0),且與圓A相切,O為坐標(biāo)原點(diǎn).
(Ⅰ)求動(dòng)圓圓心M的軌跡C的方程;
(Ⅱ)直線l與曲線C相切于點(diǎn)M,且l與x軸、y軸分別交于P、Q兩點(diǎn),若 ,且λ∈[ ,2],求△OPQ面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD-A1B1C1D1,EF,P,Q,M,N分別是棱AB,ADDD1,BB1,A1B1,A1D1的中點(diǎn).求證

(1)直線BC1∥平面EFPQ.

(2)直線AC1⊥平面PQMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=ax3+bx2+cx+d(a≠0)的導(dǎo)函數(shù)為f(x),a+b+c=0,且f(0)f(1)>0,設(shè)x1 , x2是方程f(x)=0的兩個(gè)根,則|x1﹣x2|的取值范圍為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 的右焦點(diǎn)為F(1,0),且點(diǎn)(﹣1, )在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知?jiǎng)又本l過點(diǎn)F,且與橢圓C交于A,B兩點(diǎn),試問x軸上是否存在定點(diǎn)Q,使得 恒成立?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資類產(chǎn)品的收益與投資額成正比投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比已知投資1萬(wàn)元時(shí)兩類產(chǎn)品的收益分別為0125萬(wàn)元和05萬(wàn)元

1分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;

2該家庭有20萬(wàn)元資金,全部用于理財(cái)投資問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)試比較的大小關(guān)系,并給出證明;

(2)解方程:

(3)求函數(shù), 是實(shí)數(shù))的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,點(diǎn)的中點(diǎn).

(1)求證: 平面;

(2)若平面, , ,求二面角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案