分析:(1)依題意,可求得a
n=4n-1,進(jìn)一步可證數(shù)列{b
n}是等差數(shù)列,且求得b
n=2n+1,從而可求數(shù)列{b
n}的前n項(xiàng)和S
n;
(2)利用裂項(xiàng)法可求得C
n=
(
-
),從而可求T
n=
-
-
,利用等價(jià)轉(zhuǎn)化的思想即可求得實(shí)數(shù)m的范圍.
解答:解:(1)∵數(shù)列{a
n}是等差數(shù)列,且a
3=11,a
6=23,
∴其公差d=
=
=4,
∴a
n=a
3+(n-3)d=11+(n-3)×4=4n-1,
∴a
1+a
2+…+a
n=
,
∴b
n=
=
=2n+1,
∴b
n+1-b
n=2,故數(shù)列{b
n}是等差數(shù)列,
∴S
n=b
1+b
2+…+b
n=
=n
2+2n;
(2)∵C
n=
=
=
(
-
),
∴T
n=C
1+C
2+…+C
n=
[(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=(1+
-
-
)
=
-
-
,
∵對(duì)任意的n∈N
*都有T
n≥m無(wú)解?對(duì)任意的n∈N
*都有T
n<m恒成立,
∴m≥
.
∴實(shí)數(shù)m的范圍是[
,+∞).
點(diǎn)評(píng):本題考查數(shù)列的求和,著重考查等差關(guān)系關(guān)系的確定,突出裂項(xiàng)法求和的應(yīng)用,考查等價(jià)轉(zhuǎn)化思想、方程思想與綜合運(yùn)算能力,屬于難題.