已知單調(diào)遞增的等比數(shù)列滿足:;

   (1)求數(shù)列的通項(xiàng)公式;

   (2)若,數(shù)列的前n項(xiàng)和為,求成立的正整數(shù) n的最小值.

 

 

 

 

 

 

 

 

 

 

【答案】

 解:(1)設(shè)等比數(shù)列的首項(xiàng)為,公比為q,

依題意,有,解之得;    …………4分

單調(diào)遞增,∴,∴.                  …………6分

 

   (2)依題意,,                     …………8分

        ①,

  ②,

∴①-②得

;…10分

即為,

∵當(dāng)n≤4時(shí),;當(dāng)n≥5時(shí),.

∴使成立的正整數(shù)n的最小值為5.           …………12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知單調(diào)遞增的等比數(shù)列an滿足:a2+a3+a4=28,且a3+2是a2、a4的等差中項(xiàng),則數(shù)列an的前n項(xiàng)和Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=anlog
12
an,求數(shù)列{bn}
的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=anlog 
12
an,Sn=b1+b2+b3+…+bn,對任意正整數(shù)n,Sn+(n+m)an+1<0恒成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•武漢模擬)已知單調(diào)遞增的等比數(shù)列{an}中,a2+a3+a4=28,且a3+2是a2、a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=log2an,求數(shù)列{
1bnbn+1
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng)
①求數(shù)列{an}的通項(xiàng)公式;
②設(shè)bn=anlog2an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案