已知冪函數(shù)f(x)=x(m2+m)-1(m∈N*),經(jīng)過點(2,),試確定m的值,并求滿足條件f(2-a)>f(a-1)的實數(shù)a的取值范圍.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(
為實數(shù),
),
,⑴若
,且函數(shù)
的值域為
,求
的表達式;
⑵設,且函數(shù)
為偶函數(shù),求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設是定義在
上的函數(shù),且
,對任意
,若經(jīng)過點
,
的直線與
軸的交點為
,則稱
為
關(guān)于函數(shù)
的平均數(shù),記為
,例如,當
時,可得
,即
為
的算術(shù)平均數(shù).
當時,
為
的幾何平均數(shù);
當時,
為
的調(diào)和平均數(shù)
;
(以上兩空各只需寫出一個符合要求的函數(shù)即可)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(
是自然對數(shù)的底數(shù),
),且
.
(1)求實數(shù)的值,并求函數(shù)
的單調(diào)區(qū)間;
(2)設,對任意
,恒有
成立.求實數(shù)
的取值范圍;
(3)若正實數(shù)滿足
,
,試證明:
;并進一步判斷:當正實數(shù)
滿足
,且
是互不相等的實數(shù)時,不等式
是否仍然成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=2x,g(x)=+2.
(1)求函數(shù)g(x)的值域;
(2)求滿足方程f(x)-g(x)=0的x的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2個小題滿分8分。
某加油站擬造如圖所示的鐵皮儲油罐(不計厚度,長度單位:米),其中儲油罐的中間為圓柱形,左右兩端均為半球形,(
為圓柱的高,
為球的半徑,
).假設該儲油罐的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為
千元,半球形部分每平方米建造費用為3千元.設該儲油罐的建造費用為
千元.
(1)寫出關(guān)于
的函數(shù)表達式,并求該函數(shù)的定義域;
(2)求該儲油罐的建造費用最小時的的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某造紙廠擬建一座底面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價為400元/米,中間兩道隔墻建造單價為248元/米,池底建造單價為80元/平方米,水池所有墻的厚度忽略不計.
(1)試設計污水處理池的長和寬,使總造價最低,并求出最低總造價;
(2)若由于地形限制,該池的長和寬都不能超過16米,試設計污水處理池的長和寬,使總造價最低,并求出最低總造價.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
據(jù)市場分析,廣饒縣馳中集團某蔬菜加工點,當月產(chǎn)量在10噸至25噸時,月生產(chǎn)總成本(萬元)可以看成月產(chǎn)量
(噸)的二次函數(shù).當月產(chǎn)量為10噸時,月總成本為20萬元;當月產(chǎn)量為15噸時,月總成本最低為17.5萬元.
(1)寫出月總成本(萬元)關(guān)于月產(chǎn)量
(噸)的函數(shù)關(guān)系;
(2)已知該產(chǎn)品銷售價為每噸1.6萬元,那么月產(chǎn)量為多少時,可獲最大利潤;
(3)當月產(chǎn)量為多少噸時, 每噸平均成本最低,最低成本是多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com