已知冪函數(shù)f(x)=x(m2+m)-1(m∈N*),經(jīng)過點(2,),試確定m的值,并求滿足條件f(2-a)>f(a-1)的實數(shù)a的取值范圍.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為實數(shù),),,⑴若,且函數(shù)的值域為,求的表達式;
⑵設,且函數(shù)為偶函數(shù),求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

是定義在上的函數(shù),且,對任意,若經(jīng)過點,的直線與軸的交點為,則稱關(guān)于函數(shù)的平均數(shù),記為,例如,當時,可得,即的算術(shù)平均數(shù).
時,的幾何平均數(shù);
時,的調(diào)和平均數(shù)
(以上兩空各只需寫出一個符合要求的函數(shù)即可)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(是自然對數(shù)的底數(shù),),且
(1)求實數(shù)的值,并求函數(shù)的單調(diào)區(qū)間;
(2)設,對任意,恒有成立.求實數(shù)的取值范圍;
(3)若正實數(shù)滿足,,試證明:;并進一步判斷:當正實數(shù)滿足,且是互不相等的實數(shù)時,不等式是否仍然成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=2x,g(x)=+2.
(1)求函數(shù)g(x)的值域;
(2)求滿足方程f(x)-g(x)=0的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2個小題滿分8分。
某加油站擬造如圖所示的鐵皮儲油罐(不計厚度,長度單位:米),其中儲油罐的中間為圓柱形,左右兩端均為半球形,為圓柱的高,為球的半徑,).假設該儲油罐的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為千元,半球形部分每平方米建造費用為3千元.設該儲油罐的建造費用為千元.
(1)寫出關(guān)于的函數(shù)表達式,并求該函數(shù)的定義域;
(2)求該儲油罐的建造費用最小時的的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某造紙廠擬建一座底面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價為400元/米,中間兩道隔墻建造單價為248元/米,池底建造單價為80元/平方米,水池所有墻的厚度忽略不計.

(1)試設計污水處理池的長和寬,使總造價最低,并求出最低總造價;
(2)若由于地形限制,該池的長和寬都不能超過16米,試設計污水處理池的長和寬,使總造價最低,并求出最低總造價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

據(jù)市場分析,廣饒縣馳中集團某蔬菜加工點,當月產(chǎn)量在10噸至25噸時,月生產(chǎn)總成本(萬元)可以看成月產(chǎn)量(噸)的二次函數(shù).當月產(chǎn)量為10噸時,月總成本為20萬元;當月產(chǎn)量為15噸時,月總成本最低為17.5萬元.
(1)寫出月總成本(萬元)關(guān)于月產(chǎn)量(噸)的函數(shù)關(guān)系;
(2)已知該產(chǎn)品銷售價為每噸1.6萬元,那么月產(chǎn)量為多少時,可獲最大利潤;
(3)當月產(chǎn)量為多少噸時, 每噸平均成本最低,最低成本是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)=logax(a>0且a≠1),如果對于任意的x∈都有|f(x)|≤1成立,試求a的取值范圍.

查看答案和解析>>

同步練習冊答案