△ABC中,A,B,C所對的邊分別為a,b,c,tanC=
sinA+sinB
cosA+cosB
,sin(B-A)=cosC.
(1)求A,C;
(2)若S△ABC=3+
3
,求a,c.
分析:(1)先根據(jù)同角三角函數(shù)的基本關(guān)系將正切化為正余弦之比再相乘可得到3內(nèi)角的正弦關(guān)系式,再由sin(B-A)=cosC可求出答案.
(2)先根據(jù)正弦定理得到a與c的關(guān)系,再利用三角形的面積公式可得答案.
解答:解:(1)因為tanC=
sinA+sinB
cosA+cosB

所以左邊切化弦對角相乘得到
sinCcosA-cosCsinA=cosCsinB-sinCcosB,
所以sin(C-A)=sin(B-C).
所以C-A=B-C或C-A=π-(B-C)(不成立)
即2C=A+B,C=60°,
所以A+B=120°,
又因為sin(B-A)=cosC=
1
2
,
所以B-A=30°或B-A=150°(舍),
所以A=45°,C=60°.
(2)由(1)知A=45°,C=60°∴B=75°∴sinB=
6
+
2
4

根據(jù)正弦定理可得
a
sinA
=
c
sinC
即:
a
2
2
=
c
3
2
∴a=
2
3
c

S=
1
2
acsinB=
1
2
×
2
3
c2×
6
+
2
4
=3+
3

∴c2=12∴c=2
3

∴a=
2
3
c
=2
2
點評:本題主要考查同角三角函數(shù)的基本關(guān)系和正弦定理與三角形面積公式的應用.對于三角函數(shù)這一部分公式比較多,要強化記憶.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,a、b、c分別是A、B、C的對邊.向量
m
=(2,0),
n
=(sinB,1-cosB)
(Ⅰ)若B=
π
3
.求
m
n

(Ⅱ)若
m
n
所成角為
π
3
.求角B的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a、b、c三邊成等差數(shù)列,求證:B≤60°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,A:B:C=4:2:1,證明
1
a
+
1
b
=
1
c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,a,b,c分別為角A,B,C的對邊.若a(a+b)=c2-b2,則角C為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•靜安區(qū)一模)在ρABC中,a、b、c 分別為∠A、∠B、∠C的對邊,∠A=60°,b=1,c=4,則
a+b+c
sinA+sinB+sinC
=
2
39
3
2
39
3

查看答案和解析>>

同步練習冊答案