函數(shù)
y=-的值域?yàn)椋ā 。?/div>
A、(-∞,) |
B、(0,] |
C、(,+∞) |
D、(0,+∞) |
分析:先求函數(shù)的定義域,x≥1,
而
y=-=在x≥1,上單調(diào)遞減,利用單調(diào)性可求
解答:解:函數(shù)的定義域:x≥1,
y=-=在上單調(diào)遞減
x=1時(shí)函數(shù)有最大值
故選B
點(diǎn)評(píng):本題主要考查了利用函數(shù)的單調(diào)性求函數(shù)的值域,解決本題的關(guān)鍵是對(duì)函數(shù)式進(jìn)行分子有理化,從而判定單調(diào)性進(jìn)行求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
(2013•黃埔區(qū)一模)對(duì)于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對(duì)”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“類P數(shù)對(duì)”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
(1)若(1,1)是f(x)的一個(gè)“P數(shù)對(duì)”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個(gè)“P數(shù)對(duì)”,且當(dāng)x∈[1,2)時(shí)f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個(gè)“類P數(shù)對(duì)”,試比較下列各組中兩個(gè)式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2011•順義區(qū)二模)對(duì)于定義域分別為M,N的函數(shù)y=f(x),y=g(x),規(guī)定:
函數(shù)
h(x)= | f(x)•g(x),當(dāng)x∈M且x∈N | f(x),當(dāng)x∈M且x∉N | g(x),當(dāng)x∉M且x∈N |
| |
(1)若函數(shù)
f(x)=,g(x)=x2+2x+2,x∈R,求函數(shù)h(x)的取值集合;
(2)若f(x)=1,g(x)=x
2+2x+2,設(shè)b
n為曲線y=h(x)在點(diǎn)(a
n,h(a
n))處切線的斜率;而{a
n}是等差數(shù)列,公差為1(n∈N
*),點(diǎn)P
1為直線l:2x-y+2=0與x軸的交點(diǎn),點(diǎn)P
n的坐標(biāo)為(a
n,b
n).求證:
++…+<;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,2π],請(qǐng)問,是否存在一個(gè)定義域?yàn)镽的函數(shù)y=f(x)及一個(gè)α的值,使得h(x)=cosx,若存在請(qǐng)寫出一個(gè)f(x)的解析式及一個(gè)α的值,若不存在請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
讀下列程序,程序輸出的函數(shù)y=
| -x+1 (x<0) | 0 (x=0) | x+1 (x>0) |
| |
| -x+1 (x<0) | 0 (x=0) | x+1 (x>0) |
| |
.
INPUT x
IF x<0THENy=-x+1
ELSE
IF x=0THENy=0
ELSEy=x+1
END IF
END IF
PRINT y
END.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:黃埔區(qū)一模
題型:解答題
對(duì)于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對(duì)”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“類P數(shù)對(duì)”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
(1)若(1,1)是f(x)的一個(gè)“P數(shù)對(duì)”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個(gè)“P數(shù)對(duì)”,且當(dāng)x∈[1,2)時(shí)f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個(gè)“類P數(shù)對(duì)”,試比較下列各組中兩個(gè)式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2013年上海市黃浦區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版)
題型:解答題
對(duì)于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對(duì)”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“類P數(shù)對(duì)”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
(1)若(1,1)是f(x)的一個(gè)“P數(shù)對(duì)”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個(gè)“P數(shù)對(duì)”,且當(dāng)x∈[1,2)時(shí)f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個(gè)“類P數(shù)對(duì)”,試比較下列各組中兩個(gè)式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).
查看答案和解析>>