若A,B,C是直線存在實數(shù)x使得x2
OA
+x
OB
+
BC
=
0
,實數(shù)x為(  )
A、-1
B、0
C、
-1+
5
2
D、
1+
5
2
分析:先根據(jù)
BC
=
OC
-
OB
x2
OA
+x
OB
+
BC
=
0
化為x2
OA
+x
OB
+
OC
-
OB
=
0
,進而可用
OA
OB
表示出
OC
,根據(jù)向量相等可求得x的值.
解答:解:由x2
OA
+x
OB
+
BC
=
0
,得x2
OA
+x
OB
+
OC
-
OB
=
0

OC
=-x2
OA
+(1-x)
OB

∴x2+x=0,x=-1,x=0.
若x=0,則
BC
=
0
與題設矛盾,∴x=-1,
故選A.
點評:本題主要考查向量的表示和向量相等的意義.向量是高考的重點,高考對其考查一般以基礎題為主,平時就要注意基礎知識的積累.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),⊙O:x2+y2=b2,點A、F分別是橢圓C的左頂點和左焦點,點P是⊙O上的動點.
(1)若P(-1,
3
),PA是⊙O的切線,求橢圓C的方程;
(2)若
PA
PF
是一個常數(shù),求橢圓C的離心率;
(3)當b=1時,過原點且斜率為k的直線交橢圓C于D、E兩點,其中點D在第一象限,它在x軸上的射影為點G,直線EG交橢圓C于另一點H,是否存實數(shù)a,使得對任意的k>0,都有DE⊥DH?若存在,求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若二次函數(shù)f(x)=a
x
2
 
+bx+c(a≠0)
的圖象和直線y=x無交點,現(xiàn)有下列結論:
①方程f[f(x)]=x一定沒有實數(shù)根;
②若a>0,則不等式f[f(x)]>x對一切實數(shù)x都成立;
③若a<0,則必存存在實數(shù)x0,使f[f(x0)]>x0
④若a+b+c=0,則不等式f[f(x)]<x對一切實數(shù)都成立;
⑤函數(shù)g(x)=a
x
2
 
-bx+c
的圖象與直線y=-x也一定沒有交點.
其中正確的結論是
①②④⑤
①②④⑤
(寫出所有正確結論的編號).

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省示范高中高三(上)第一次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:填空題

若二次函數(shù)的圖象和直線y=x無交點,現(xiàn)有下列結論:
①方程f[f(x)]=x一定沒有實數(shù)根;
②若a>0,則不等式f[f(x)]>x對一切實數(shù)x都成立;
③若a<0,則必存存在實數(shù)x,使f[f(x)]>x;
④若a+b+c=0,則不等式f[f(x)]<x對一切實數(shù)都成立;
⑤函數(shù)的圖象與直線y=-x也一定沒有交點.
其中正確的結論是    (寫出所有正確結論的編號).

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省示范高中高三(上)第一次聯(lián)考數(shù)學試卷(文科)(解析版) 題型:填空題

若二次函數(shù)的圖象和直線y=x無交點,現(xiàn)有下列結論:
①方程f[f(x)]=x一定沒有實數(shù)根;
②若a>0,則不等式f[f(x)]>x對一切實數(shù)x都成立;
③若a<0,則必存存在實數(shù)x,使f[f(x)]>x;
④若a+b+c=0,則不等式f[f(x)]<x對一切實數(shù)都成立;
⑤函數(shù)的圖象與直線y=-x也一定沒有交點.
其中正確的結論是    (寫出所有正確結論的編號).

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省示范高中高三(上)第一次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:填空題

若二次函數(shù)的圖象和直線y=x無交點,現(xiàn)有下列結論:
①方程f[f(x)]=x一定沒有實數(shù)根;
②若a>0,則不等式f[f(x)]>x對一切實數(shù)x都成立;
③若a<0,則必存存在實數(shù)x,使f[f(x)]>x;
④若a+b+c=0,則不等式f[f(x)]<x對一切實數(shù)都成立;
⑤函數(shù)的圖象與直線y=-x也一定沒有交點.
其中正確的結論是    (寫出所有正確結論的編號).

查看答案和解析>>

同步練習冊答案