17.已知曲線f(x)=2x2+1在點(diǎn)M(x0,y0)處的瞬時(shí)變化率為-4,則點(diǎn)M的坐標(biāo)為(-1,3).

分析 求導(dǎo)函數(shù),令其值為-4,即可求得結(jié)論.

解答 解:∵y=2x2+1,∴y′=4x,
令4x0=-4,則x0=-1,∴y0=3
∴點(diǎn)M的坐標(biāo)是(-1,3)
故答案為:(-1,3)

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=BC=2,$AD=CD=\sqrt{7}$,$PA=\sqrt{3}$,∠ABC=120°,G為線段PC上的點(diǎn).
(1)若G是PC的中點(diǎn),
①求證:PA∥平面GBD
②求DG與平面APC所成的角的正切值;
(2)若G滿(mǎn)足PC⊥面GBD,求$\frac{PG}{GC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)$f(x)=\frac{{5-x+{4^x}}}{2}-\frac{{|{5-x-{4^x}}|}}{2}$,則f(x)的單調(diào)增區(qū)間為(-∞,1],$f(x)>\sqrt{5}$的解集為(1,5-$\sqrt{5}$)∪(log4$\sqrt{5}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列四個(gè)結(jié)論中:正確結(jié)論的個(gè)數(shù)是
①若x∈R,則$tanx=\sqrt{3}$是$x=\frac{π}{3}$的充分不必要條件;
②命題“若x-sinx=0,則x=0”的逆命題為“若x≠0,則x-sinx≠0”;
③若向量$\overrightarrow a\;,\;\overrightarrow b$滿(mǎn)足$|\overrightarrow a•\overrightarrow b|=|\overrightarrow a||\overrightarrow b|$,則$\overrightarrow a∥\overrightarrow b$恒成立;( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.雙曲線C的中心在原點(diǎn),右焦點(diǎn)為F($\frac{2\sqrt{3}}{3}$,0),一條漸近線方程為y=$\sqrt{3}$x,
(1)求雙曲線C方程
(2)設(shè)直線L:y=kx+1與雙曲線交于A,B兩點(diǎn),問(wèn):當(dāng)k為何值時(shí),以AB為直徑的圓過(guò)原點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.正三棱柱ABC-A1B1C1的側(cè)棱長(zhǎng)為3,AB=4,D是A1C1的中點(diǎn),則AD與面B1DC所成角的正弦值為$\frac{12}{13}$;點(diǎn)E是BC中點(diǎn),則過(guò)A,D,E三點(diǎn)的截面面積是$\frac{3}{2}\sqrt{30}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.當(dāng)用反證法證明“已知x>y,證明:x3>y3”時(shí),假設(shè)的內(nèi)容應(yīng)是( 。
A.x3≤y3B.x3<y3C.x3>y3D.x3≥y3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=xlnx-k(x-1)
(1)求f(x)的單調(diào)區(qū)間;并證明lnx+$\frac{e}{x}$≥2(e為自然對(duì)數(shù)的底數(shù))恒成立;
(2)若函數(shù)f(x)的一個(gè)零點(diǎn)為x1(x1>1),f'(x)的一個(gè)零點(diǎn)為x0,是否存在實(shí)數(shù)k,使$\frac{x_1}{x_0}$=k,若存在,求出所有滿(mǎn)足條件的k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB⊥AC,AB=3,AC=AA1=6,AD=CD=5,且點(diǎn)M和N分別為B1C和D1D的中點(diǎn).
(1)求證:MN∥平面ABCD;
(2)求二面角D1-AC-B1的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案