(1+x)(1-x)3展開式中x3的系數(shù)是
 
考點:二項式系數(shù)的性質
專題:二項式定理
分析:結合二項式定理,化簡表達式為(1-x2)(1-x)2,然后求出展開式中x3的系數(shù)即可.
解答: 解:(1+x)(1-x)3=(1-x2)(1-x)2,
(1+x)(1-x)3展開式中x3的系數(shù),只需求解(1-x)2中的x的系數(shù)與(1-x2)中x2項的系數(shù)的乘積,
∴(1+x)(1-x)3展開式中x3的系數(shù)是:-1×(-2)=2.
故答案為:2.
點評:本題考查二項式定理的應用,二項式定理系數(shù)的性質,特定項的求法,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若存在實數(shù)x0與正數(shù)a,使x0+a,x0-a均在函數(shù)f(x)的定義域內,且f(x0+a)=f(x0-a)成立,則稱“函數(shù)f(x)在x=x0處存在長度為a的對稱點”.
(1)設f(x)=x3-3x2+2x-1,問是否存在正數(shù)a,使“函數(shù)f(x)在x=1處存在長度為a的對稱點”?試說明理由.
(2)設g(x)=x+
b
x
(x>0),若對于任意x0∈(3,4),總存在正數(shù)a,使得“函數(shù)g(x)在x=x0處存在長度為a的對稱點”,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的公差為d,Sn是{an}中從第2n-1項開始的連續(xù)2n-1項的和,即:
S1=a1,
S2=a2+a3,
S3=a4+a5+a6+a7

Sn=a 2n-1+a 2n-1+1+…+a 2n-1,

(1)當a1=3,d=2時,求S4
(2)若S1,S2,S3成等比數(shù)列,問:數(shù)列{Sn}是否成等比數(shù)列?請說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,點p是單位圓上位于第一象限的動點,過p作x軸的垂線與射線y=xtanθ(x≥0,0<θ<
π
2
)交于點Q,與x軸交于點M,射線與單位圓交于N,設∠MOP=α,且α∈(0,θ)
(1)若θ=
π
3
,sinα=
3
5
,求cos∠POQ;
(2)若θ=
π
4
,求四邊形OMPN面積的最大值,
(3)并求取最大值時的α值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩點F1(-1,0)、F2(1,0),且|F1F2|是|PF1|與|PF2|的等差中項,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
sinα-cosα
sinα+cosα
=3,則tan2α等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在下列命題中
①函數(shù)f(x)=
1
x
在定義域內為單調遞減函數(shù);
②已知定義在R上周期為4的函數(shù)f(x)滿足f(2-x)=f(2+x),則f(x)一定為偶函數(shù);
③若f(x)為奇函數(shù),則
a
-a
f(x)dx=2
a
0
f(x)dx(a>0);
④已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0),則a+b+c=0是f(x)有極值的充分不必要條件;
⑤已知函數(shù)f(x)=x-sinx,若a+b>0,則f(a)+f(b)>0.
其中正確命題的序號為
 
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

lg5•lg8000+(lg2 
3
2+eln1=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足約束條件
x-2y+1≤0
2x-y≥0
x≤1
,則z=
x+1
y+1
的最大值為a,最小值為b,則a-b的值是( 。
A、
1
2
B、
2
3
C、
1
3
D、1

查看答案和解析>>

同步練習冊答案