如圖所示,正三棱柱ABC-A1B1C1的底面邊長是2,側(cè)棱長是
3
,D是AC的中點.
(Ⅰ)求證:B1C∥平面A1BD;
(Ⅱ)求二面角A1-BD-A的大;
(Ⅲ)求點A到平面A1BD的距離.
分析:(Ⅰ)設AB1與A1B相交于點P,連接PD,則P為AB1中點,由此能夠證明B1C∥平面A1BD.
(Ⅱ)法一:由正三棱柱ABC-A1B1C1中D是AC的中點,知BD⊥AC,由平面AA1C1C⊥平面ABC,知BD⊥平面AA1C1C,故BD⊥A1D,∠A1DA為二面角A1-BD-A的平面角,由此能求出二面角A1-BD-A的大小.
(Ⅱ)法二:建立空間直角坐標系,利用向量法能求出二面角A1-BD-A的大小.
(Ⅲ)法一:由(Ⅱ)知BD⊥AC、BD⊥A1D,設點A到平面A1BD的距離為d,利用等積法能求出點A到平面A1BD的距離.
(Ⅲ)法二:由(Ⅱ)得
DA
=(1,0,0),n=(-
3
,0,1),利用向量法能求出點A到平面A1BD的距離.
解答:解:(Ⅰ)證明:設AB1與A1B相交于點P,連接PD,
則P為AB1中點,
∵D為AC中點,
∴PD∥B1C.
又∵PD?平面A1BD,
∴B1C∥平面A1BD.…(4分)
(Ⅱ)解法一:由正三棱柱ABC-A1B1C1中D是AC的中點,
知BD⊥AC,
又∵平面AA1C1C⊥平面ABC,
∴BD⊥平面AA1C1C,∴BD⊥A1D,
故∠A1DA為二面角A1-BD-A的平面角,
又AD⊥A1A,A1A=
3
,AD=1,
∴∠A1DA=60°,即二面角A1-BD-A的大小為60°.…(8分)
(Ⅱ)解法二:如圖建立空間直角坐標系,
則D(0,0,0),A(1,0,0),A1(1,0,
3
),
B(0,
3
,0),B1(0,
3
,
3
),
A1B
=(-1,
3
,-
3
),
A1D
=(-1,0,-
3
),
設平面A1BD的法向量為
n
=(x,y,z),
n
A1B
=-x+
3
y-
3
z=0
,
n
A1D
=-x-
3
z=0

則有
x=-
3
z
y=0
,令z=1,得
n
=(-
3
,0,1)
由題意,知
AA1
=(0,0,
3
)是平面ABD的一個法向量.
n
AA1
所成角為θ,
cosθ=
n•
AA1
|n|•|
AA1
|
=
1
2
,∴θ=
π
3
,
∴二面角A1-BD-A的大小是
π
3
…(8分)
(Ⅲ)解法一:由(Ⅱ)知BD⊥AC、BD⊥A1D,
設點A到平面A1BD的距離為d,
VA1-ABD=
1
3
S△ABDA1A=VA-A1BD=
1
3
SA1BD•d

1
3
S△ABDA1A=
1
3
×
1
2
×1×
3
×
3

=
1
3
SA1BD•d=
1
3
×
1
2
×
3
×
12+(
3
)
2
×d

解得:d=
3
2

即點A到平面A1BD的距離為d=
3
2
.…(12分)
(Ⅲ)解法二:由(Ⅱ)已知,
DA
=(1,0,0),
n
=(-
3
,0,1)
d=
|
DA
•n|
|n|
=
3
2

即點A到平面A1BD的距離為d=
3
2
.…(12分)
點評:本題考查直線與平面平行、二面角、點到平面的距離的求法,解題時要認真審題,仔細解答,注意合理地進行等價轉(zhuǎn)化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(08年唐山一中調(diào)研二) 如圖所示,正三棱柱的底面邊長為a,點M在BC上,是以點M為直角頂點的等腰直角三角形。

   (Ⅰ)求證:點M為邊BC的中點;

   (Ⅱ)求點C到平面的距離;

   (Ⅲ)求二面角的大小。

 

查看答案和解析>>

科目:高中數(shù)學 來源:同步題 題型:證明題

如圖所示,正三棱柱ABC-A1B1C1的棱長均為a,D、E分別為C1C與AB的中點,A1B交AB1于G。

(1)求證:A1B⊥AD;
(2)求證:CE∥平面AB1D。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省雅安中學高二(下)4月月考數(shù)學試卷(理科)(解析版) 題型:解答題

如圖所示,正三棱柱ABC-A1B1C1的底面邊長是2,側(cè)棱長是,D是AC的中點.
(Ⅰ)求證:B1C∥平面A1BD;
(Ⅱ)求二面角A1-BD-A的大;
(Ⅲ)求點A到平面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省宜賓市高三(上)調(diào)研數(shù)學試卷(理科)(解析版) 題型:解答題

如圖所示,正三棱柱ABC-A1B1C1的底面邊長是2,側(cè)棱長是,D是AC的中點.
(Ⅰ)求證:B1C∥平面A1BD;
(Ⅱ)求二面角A1-BD-A的大;
(Ⅲ)求點A到平面A1BD的距離.

查看答案和解析>>

同步練習冊答案