直線y=kx+b與曲線交于A、B兩點(diǎn),記△AOB的面積為S(O是坐標(biāo)原點(diǎn)).
(1)求曲線的離心率;
(2)求在k=0,0<b<1的條件下,S的最大值;
(3)當(dāng)|AB|=2,S=1時(shí),求直線AB的方程.
(1)離心率.(2)當(dāng)時(shí), S取到最大值1.
(3)或或或.
解析試題分析:(1)轉(zhuǎn)化成標(biāo)準(zhǔn)方程,明確曲線為橢圓,,進(jìn)一步得到橢圓的離心率.
(2)設(shè)點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,由,解得,
將面積用b表示.
(3)由,應(yīng)用弦長(zhǎng)公式,得到|AB|=,
根據(jù)O到AB的距離得到代入上式并整理,解得k,b.
試題解析: (1)曲線的方程可化為:,
∴此曲線為橢圓,,
∴此橢圓的離心率. 4分
(2)設(shè)點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,
由,解得, 6分
所以
當(dāng)且僅當(dāng)時(shí), S取到最大值1. 8分
(3)由得,
①
|AB|= ②
又因?yàn)镺到AB的距離,所以 ③
③代入②并整理,得
解得,,代入①式檢驗(yàn),△>0 ,
故直線AB的方程是
或或或. 14分
考點(diǎn):橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系,點(diǎn)到直線的距離公式,函數(shù)的最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓經(jīng)過(guò)點(diǎn),離心率為,過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,分別是橢圓的左、右焦點(diǎn),頂點(diǎn)的坐標(biāo)為,連結(jié)并延長(zhǎng)交橢圓于點(diǎn)A,過(guò)點(diǎn)A作軸的垂線交橢圓于另一點(diǎn)C,連結(jié).
(1)若點(diǎn)C的坐標(biāo)為,且,求橢圓的方程;
(2)若求橢圓離心率e的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為.
(1)若原點(diǎn)到直線的距離為,求橢圓的方程;
(2)設(shè)過(guò)橢圓的右焦點(diǎn)且傾斜角為的直線和橢圓交于A,B兩點(diǎn).
當(dāng),求b的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:=1(a>0,b>0)的離心率與雙曲線=1的一條漸近線的斜率相等以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線sin·x+cos·y-l=0相切(為常數(shù)).
(1)求橢圓C的方程;
(2)若過(guò)點(diǎn)M(3,0)的直線與橢圓C相交TA,B兩點(diǎn),設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)t取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,矩形ABCD中,|AB|=4,|BC|=2,E,F(xiàn),M,N分別是矩形四條邊的中點(diǎn),G,H分別是線段ON,CN的中點(diǎn).
(1)證明:直線EG與FH的交點(diǎn)L在橢圓W:上;
(2)設(shè)直線l:與橢圓W:有兩個(gè)不同的交點(diǎn)P,Q,直線l與矩形ABCD有兩個(gè)不同的交點(diǎn)S,T,求的最大值及取得最大值時(shí)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知⊙O′過(guò)定點(diǎn)A(0,p)(p>0),圓心O′在拋物線C:x2=2py(p>0)上運(yùn)動(dòng),MN為圓O′在x軸上所截得的弦.
(1)當(dāng)O′點(diǎn)運(yùn)動(dòng)時(shí),|MN|是否有變化?并證明你的結(jié)論;
(2)當(dāng)|OA|是|OM|與|ON|的等差中項(xiàng)時(shí),試判斷拋物線C的準(zhǔn)線與圓O′的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
如圖,已知拋物線,過(guò)點(diǎn)任作一直線與相交于兩點(diǎn),過(guò)點(diǎn)作軸的平行線與直線相交于點(diǎn)(為坐標(biāo)原點(diǎn)).
(1)證明:動(dòng)點(diǎn)在定直線上;
(2)作的任意一條切線(不含軸)與直線相交于點(diǎn),與(1)中的定直線相交于點(diǎn),證明:為定值,并求此定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com