【題目】如圖,直線l⊥平面α,垂足為O,已知△ABC中,∠ABC為直角,AB=2,BC=1,該直角三角形做符合以下條件的自由運(yùn)動:(1)A∈l,(2)B∈α.則C、O兩點(diǎn)間的最大距離為

【答案】
【解析】解:將原問題轉(zhuǎn)化為平面內(nèi)的最大距離問題解決,
以O(shè)為原點(diǎn),OA為y軸,OB為x軸建立直角坐標(biāo)系,如圖.
設(shè)∠ABO=θ,C(x,y),則有:
x=ABcosθ+BCsinθ
=2cosθ+sinθ,
y=BCcosθ
=cosθ.
∴x2+y2=4cos2θ+4sinθcosθ+1
=2cos2θ+2sin2θ+3
=2 sin(2θ+ )+3,
當(dāng)sin(2θ+ )=1時(shí),x2+y2最大,為2 +3,
則C、O兩點(diǎn)間的最大距離為
所以答案是:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cos(ωx+ )(其中ω>0,x∈R)的最小正周期為10π.
(1)求ω的值;
(2)設(shè)α,β∈[0, ],f(5α+ )=﹣ ,f(5β﹣ )= ,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸長為,橢圓上任意一點(diǎn)到右焦點(diǎn)距 離的最大值為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點(diǎn)作直線與曲線交于兩點(diǎn),點(diǎn)滿足為坐標(biāo)原點(diǎn)),求四邊形面積的最大值,并求此時(shí)的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(2cos2x,sinx), =(1,2cosx). (Ⅰ)若 且0<x<π,試求x的值;
(Ⅱ)設(shè)f(x)= ,試求f(x)的對稱軸方程和對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2﹣ax+a(x∈R)同時(shí)滿足:
①不等式f(x)≤0的解集有且只有一個(gè)元素;
②在定義域內(nèi)存在0<x1<x2 , 使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n).
(1)求f(x)的表達(dá)式;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè) ,cn= ,{cn}的前n項(xiàng)和為Tn , 若Tn>2n+t對任意n∈N,n≥2恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,BC⊥平面APC,AB=2 ,AP=PC=CB=2.

(1)求證:AP⊥平面PBC;
(2)求二面角P﹣AB﹣C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)與直線x+y﹣1=0相交于A、B兩點(diǎn),若a∈[ , ],且以AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O,則橢圓離心率e的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中, 相交于點(diǎn) 平面,

(I)求證: 平面;

(II)當(dāng)直線與平面所成的角為時(shí),求二面角的余弦角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:在四棱錐P﹣ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,點(diǎn)M,N分別為BC,PA的中點(diǎn),且PA=AB=2.
(Ⅰ)證明:BC⊥平面AMN;
(Ⅱ)求三棱錐N﹣AMC的體積;
(Ⅲ)在線段PD上是否存在一點(diǎn)E,使得NM∥平面ACE;若存在,求出PE的長;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案