函數(shù)的定義域為,若,且時總有,則稱為單函數(shù).例如是單函數(shù),現(xiàn)給出下列結論:

①函數(shù)是單函數(shù);

②函數(shù)是單函數(shù);

③偶函數(shù),)有可能是單函數(shù);

④在定義域上具有單調(diào)性的函數(shù)一定是單函數(shù).

其中的正確的結論是        (寫出所有正確結論的序號).

 

【答案】

②④

【解析】

試題分析:因為根據(jù)題意為單函數(shù),說明一個x對應一個y,反之呢,一個y對應一個x,因此根據(jù)對于概念的理解, 得到

命題1中,函數(shù)是二次函數(shù),顯然不滿足一個y對應一個x。舍去

命題2中,是指數(shù)函數(shù),在整個定義域內(nèi)嚴格遞增,那么滿足單函數(shù)的定義,成立。

命題3中,由于函數(shù)是抽象函數(shù),且為偶函數(shù),)有可能是單函數(shù),不能滿足。因為f(-m)=f(m),不同的變量也有同一個函數(shù)值。故錯誤

命題4中,在定義域上具有單調(diào)性的函數(shù)一定是單函數(shù).

顯然符合定義,故成立,正確的命題序號為②④

考點:本試題考查了新定義的運用。

點評:理解這里的單函數(shù)實際上就是一一對應的函數(shù),那么利用這一點逐項分析,結合指數(shù)函數(shù)和冪函數(shù)的性質(zhì)來得到結論。屬于中檔題。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)的定義域為,若存在常數(shù),使對一切實數(shù)均成立,則稱函數(shù).給出下列函數(shù):

;②;③;④;⑤是定義在上的奇函數(shù),且滿足對一切實數(shù)、均有.其中是函數(shù)的序號為             

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河南省鄧州一高分校高三上學期第四次周考文科數(shù)學試卷(解析版) 題型:解答題

設命題:函數(shù)=上的減函數(shù),命題:函數(shù)的定義域為,若“”為假命題,“”為真命題,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省溫州市高三上學期期初考試理科數(shù)學試卷(解析版) 題型:填空題

設函數(shù)的定義域為,若存在非零實數(shù)使得對于任意,有,且,則稱上的高調(diào)函數(shù).如果定義域是的函數(shù)上的高調(diào)函數(shù),那么實數(shù)的取值范圍是    .     

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省高三第一次月考文科數(shù)學試卷(解析版) 題型:填空題

設函數(shù)的定義域為,若存在非零實數(shù)使得對于任意,有,且,則稱上的“高調(diào)函數(shù)”.現(xiàn)給出下列命題:

①函數(shù)上的“1高調(diào)函數(shù)”;

②函數(shù)上的“高調(diào)函數(shù)”;

③如果定義域為的函數(shù)上“高調(diào)函數(shù)”,那么實數(shù)的取值范圍是;

其中正確的命題是        .(寫出所有正確命題的序號)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆江蘇省無錫市高二下期中數(shù)學試卷(成志班)(解析版) 題型:填空題

設函數(shù)的定義域為,若存在常數(shù),使對一切實數(shù)均成立,則稱為“海寶”函數(shù). 給出下列函數(shù):

;②;③;④

其中是“海寶”函數(shù)的序號為   

 

查看答案和解析>>

同步練習冊答案