(2008•閘北區(qū)二模)設(shè)x、y滿足約束條件:
x+y≤1
y≤x
y≥0.
則目標(biāo)函數(shù)z=2x+y的最大值為( 。
分析:先根據(jù)約束條件畫(huà)出平面區(qū)域,然后平移直線y=-2x,當(dāng)過(guò)點(diǎn)(1,0)時(shí),直線在y軸上的截距最大,從而求出所求.
解答:解:滿足約束條件
x+y≤1
y≤x
y≥0.
的平面區(qū)域如下圖所示:
平移直線y=-2x,由圖易得,當(dāng)x=1,y=0時(shí),
目標(biāo)函數(shù)z=2x+y的最大值為2
故選B.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是簡(jiǎn)單的線性規(guī)劃,畫(huà)出滿足約束條件的可行域是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•閘北區(qū)二模)已知邊長(zhǎng)為1的正三角形ABC中,則
BC
CA
+
CA
AB
+
AB
BC
的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•閘北區(qū)二模)某農(nóng)貿(mào)公司按每擔(dān)200元收購(gòu)某農(nóng)產(chǎn)品,并按每100元納稅10元(又稱征稅率為10個(gè)百分點(diǎn)),計(jì)劃可收購(gòu)a萬(wàn)擔(dān).政府為了鼓勵(lì)收購(gòu)公司多收購(gòu)這種農(nóng)產(chǎn)品,決定征稅率降低x(x≠0)個(gè)百分點(diǎn),預(yù)測(cè)收購(gòu)量可增加2x個(gè)百分點(diǎn).
(Ⅰ)寫(xiě)出稅收y(萬(wàn)元)與x的函數(shù)關(guān)系式;
(Ⅱ)要使此項(xiàng)稅收在稅率調(diào)節(jié)后,不少于原計(jì)劃稅收的83.2%,試確定x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•閘北區(qū)二模)已知關(guān)于x,y的方程組
y=
-x2-2x
x+y-m=0
有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•閘北區(qū)二模)如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,A1、A2為橢圓C的左、右頂點(diǎn).
(Ⅰ)設(shè)F1為橢圓C的左焦點(diǎn),證明:當(dāng)且僅當(dāng)橢圓C上的點(diǎn)P在橢圓的左、右頂點(diǎn)時(shí)|PF1|取得最小值與最大值;
(Ⅱ)若橢圓C上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅲ)若直線l:y=kx+m與(Ⅱ)中所述橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且滿足AA2⊥BA2,求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•閘北區(qū)二模)若
lim
n→∞
an2+bn
n+1
=2
,則a+b=
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案