如圖3,正方體中,分別為
的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求二面角的正切值.
證明:
(I)
(II)延長(zhǎng)DE、CB交于N,∵E為AB中點(diǎn),∴△DAE≌△NBE
過B作BM⊥EN交于M,連FM,∵FB⊥平面ABCD                         
∴FM⊥DN,∴∠FMB為二面角F—DE—C的平面角
設(shè)AB=a,則BM=   又BF=
∴tan∠FMB=,即二面角F—DE—C大小的正切值為 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
如圖,在四面體中,,點(diǎn)分別是的中點(diǎn). 求證:
(1)直線平面;
(2)平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

有如下三個(gè)命題:
①分別在兩個(gè)平面內(nèi)的兩條直線一定是異面直線;
②垂直于同一個(gè)平面的兩條直線是平行直線;
③過平面的一條斜線有一個(gè)平面與平面垂直;
其中正確命題的個(gè)數(shù)為­­­­­­­­­­(   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=A,AB=2,以AC的中點(diǎn)O為球心、AC為直徑的球面交PD于點(diǎn)M。
(1)求證:平面ABM⊥平面PCD;
(2)求直線CD與平面ACM所成的角的大小;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,底面的菱形,
側(cè)面是邊長(zhǎng)為2的正三角形,且與底面垂直,的中點(diǎn).
(1)求證:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線a∥平面a,直線b⊥直線a,則直線b與平面a的位置關(guān)系是( ▲ )
A.b∥aB.bÌaC.b與a相交D.以上均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方體棱長(zhǎng)為1,的中點(diǎn),的中點(diǎn),的中點(diǎn)
(1)求證:
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對(duì)于平面、和直線、m、n,下列命題中真命題是(   )
A.若,則
B.若,則
C.若,則
D.若

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面為正方形,側(cè)棱底面,,垂足為,的中點(diǎn).
(Ⅰ)證明:∥平面;
(Ⅱ)證明:平面⊥平面.

查看答案和解析>>

同步練習(xí)冊(cè)答案