已知函數(shù)
(1)若,求在圖象與軸交點處的切線方程;
(2)若在(1,2)上為單調(diào)函數(shù),求的范圍.

(1);(2)。

解析試題分析:(1), ,
圖象與軸只有一交點,且為(1,0),又
∴在(1,0)切線方程為            6分
(2) 若在(1,2)為增函數(shù),則
增圖象,從而,若在(1,2)為減函數(shù)
增圖象,從而             12分
考點:導數(shù)的幾何意義,直線方程,應用導數(shù)研究函數(shù)的單調(diào)性、不等式恒成立問題。
點評:難題,本題屬于導數(shù)應用中的基本問題,在某區(qū)間,導數(shù)值非負,函數(shù)為增函數(shù),導數(shù)值非正,函數(shù)為減函數(shù)。通過研究函數(shù)的導數(shù),得到不等式恒成立問題,轉化成了研究函數(shù)的最值,通過構建a的不等式,求得a的范圍。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=2﹣|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),請用定義證明上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),且
(1)求;
(2)判斷的奇偶性;
(3)判斷上的單調(diào)性,并證明。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x2+2ax+3,x∈[-4,6].
(1)當a=-2時,求f(x)的最值;
(2)求實數(shù)a的取值范圍,使y=f(x)在區(qū)間[-4,6]上是單調(diào)函數(shù);
(3)當a=1時,求f(|x|)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(1)當時,證明:對,;
(2)若,且存在單調(diào)遞減區(qū)間,求的取值范圍;
(3)數(shù)列,若存在常數(shù),,都有,則稱數(shù)列有上界。已知,試判斷數(shù)列是否有上界.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)對定義域內(nèi)任意,有
⑴求;
⑵判斷的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若函數(shù)存在極值點,求實數(shù)b的取值范圍;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當時,令,(),()為曲線y=上的兩動點,O為坐標原點,能否使得是以O為直角頂點的直角三角形,且斜邊中點在y軸上?請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,其中為正實數(shù).
(1)當時,求的極值點;
(2)若上的單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

同步練習冊答案