精英家教網 > 高中數學 > 題目詳情
6.若實數x,y滿足約束條件$\left\{\begin{array}{l}{x+2y<6}\\{3x-y<3}\\{2x+y>0}\\{x∈Z}\\{y∈Z}\end{array}\right.$,則z=x+y的最大值是( 。
A.2B.3C.4D.1

分析 根據目標函數的解析式形式,分析目標函數的幾何意義,然后判斷目標函數取得最優(yōu)解的點的坐標,即可求解.

解答 解:先根據約束條件畫出可行域,
然后平移直線0=x+y,
當直線z=x+y過點A(4,0)時,z最大值為4.
故選:C.

點評 本題考查線性規(guī)劃知識的運用,考查學生的計算能力,考查數形結合的數學思想

練習冊系列答案
相關習題

科目:高中數學 來源:2017屆安徽合肥一中高三上學期月考一數學(理)試卷(解析版) 題型:解答題

市場上有一種新型的強力洗衣粉,特點是去污速度快,已知每投放)個單位的洗衣粉液在一定量水的洗衣機中,它在水中釋放的濃度(克/升)隨著時間(分鐘)變化的函數關系式近似為,其中,若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應時刻所釋放的濃度之和,根據經驗,當水中洗衣液的濃度不低于4(克/升)時,它才能起有效去污的作用.

(1)若只投放一次4個單位的洗衣液,則有效去污時間可能達幾分鐘?

(2)若先投放2個單位的洗衣液,6分鐘后投放個單位的洗衣液,要使接下來的4分鐘中能夠持續(xù)有效去污,試求的最小值(精確到0.1,參考數據:).

查看答案和解析>>

科目:高中數學 來源:2016-2017學年河北正定中學高二上月考一數學(文)試卷(解析版) 題型:選擇題

運行下面的程序,若,則輸出的等于( )

A.9 B.7 C.13 D.11

查看答案和解析>>

科目:高中數學 來源:2016-2017學年河北正定中學高二上月考一數學(理)試卷(解析版) 題型:選擇題

已知向量與向量平行,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知拋物線的頂點在原點,準線方程為x=1,F是焦點,過點A(-2,0)的直線與拋物線交于P(x1,y1),Q(x2,y2)兩點,直線PF,QF分別交拋物線于點M,N.
(1)求拋物線的方程及y1y2的值;
(2)記直線PQ,MN的斜率分別為k1,k2,證明:$\frac{{k}_{1}}{{k}_{2}}$為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.已知棱長為1的正方體ABCD-A1B1C1D1中,P,Q是面對角線A1C1的兩個不同的動點.
①存在M,N兩點,使BP⊥DQ;
②體對角線BD1垂直平面DPQ;
③若|PQ|=1,S△BPD∈[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$];
④若|PQ|=1,則四面體BDPQ在平面ABCD上的正投影面積為定值;
⑤若|PQ|=1,則四面體BDPQ的體積隨著線段PQ移動而變化;
以上命題為真命題的有①②④.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知過點A(1,$\frac{3}{2}$)的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F,且AF所在直線的斜率為$\frac{3}{4}$.
(1)求橢圓的C的方程;
(2)若存在直線l與橢圓交于兩點M、N(均異于點A),使得∠MAN=90°,求證:直線l過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.甲、乙等5名選手被隨即分配到A、B、C、D四個不同的項目中,每個項目至少有一人,則甲乙兩人同時參加A項目的概率為$\frac{1}{40}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知數列{an}的前n項和Sn=n2+2n,正項等比數列{bn}滿足:b1=a1-1,且b4=2b2+b3
(Ⅰ)求數列{an}和{bn}的通項公式;
(Ⅱ)若數列{cn}滿足:cn=$\frac{{a}_{n}}{_{n}}$,其前n項和為Tn,求Tn的取值范圍.

查看答案和解析>>

同步練習冊答案