如圖,已知拋物線C:y2=4x,過點(diǎn)A(1,2)作拋物線C的弦AP,AQ.
(Ⅰ)若AP⊥AQ,證明直線PQ過定點(diǎn),并求出定點(diǎn)的坐標(biāo);
(Ⅱ)假設(shè)直線PQ過點(diǎn)T(5,-2),請(qǐng)問是否存在以PQ為底邊的等腰三角形APQ?若存在,求出△APQ的個(gè)數(shù)?如果不存在,請(qǐng)說明理由.

【答案】分析:(I)設(shè)直線l的方程與拋物線方程聯(lián)立,利用AP⊥AQ,結(jié)合韋達(dá)定理,即可證明直線PQ過定點(diǎn),并可求出定點(diǎn)的坐標(biāo);
(II)先求出PQ的中點(diǎn)坐標(biāo),再結(jié)合三角形APQ為等腰三角形求出關(guān)于m的等式,借助于函數(shù)的單調(diào)性求出m的取值個(gè)數(shù)即可得到結(jié)論.
解答:(Ⅰ)證明:設(shè)直線PQ的方程為x=my+n,點(diǎn)P、Q的坐標(biāo)分別為P(x1,y1),Q(x2,y2).
直線方程代入拋物線方程,消x得y2-4my-4n=0.
由△>0,得m2+n>0,y1+y2=4m,y1•y2=-4n.
∵AP⊥AQ,∴,∴(x1-1)(x2-1)+(y1-2)(y2-2)=0.
∴(y1-2)(y2-2)[(y1+2)(y2+2)+16]=0,
∴(y1-2)(y2-2)=0或(y1+2)(y2+2)+16=0.
∴n=2m-1或n=2m+5,∵△>0恒成立,∴n=2m+5.
∴直線PQ的方程為x-5=m(y+2),
∴直線PQ過定點(diǎn)(5,-2).
(Ⅱ)解:假設(shè)存在以PQ為底邊的等腰三角形APQ,由第(Ⅰ)問可知,將n用2m+5代換得直線PQ的方程為x=my+2m+5.設(shè)點(diǎn)P、Q的坐標(biāo)分別為P(x1,y1),Q(x2,y2),直線方程代入拋物線方程,消x得y2-4my-8m-20=0.
∴y1+y2=4m,y1•y2=-8m-20.
∴PQ的中點(diǎn)坐標(biāo)為(2m2+2m+5,2m).
由已知得,即m3+m2+3m-1=0.
設(shè)g(m)=m3+m2+3m-1,則g′(m)=3m2+2m+3>0,
∴g(m)在R上是增函數(shù).
又g(0)=-1<0,g(1)=4>0,∴g(m)在(0,1)內(nèi)有一個(gè)零點(diǎn).
∴函數(shù)g(m)在R上有且只有一個(gè)零點(diǎn),即方程m3+m2+3m-1=0在R上有唯一實(shí)根.
所以滿足條件的等腰三角形有且只有一個(gè).
點(diǎn)評(píng):本題主要考查直線與拋物線的綜合問題.解決第一問的巧妙之處在于直線方程的設(shè)法.當(dāng)直線的斜率不確定存在時(shí),為避免討論,常設(shè)直線方程為x=my+n的形式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,A是拋物線上橫坐標(biāo)為4且位于x軸上方的點(diǎn). A到拋物線準(zhǔn)線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點(diǎn)為M(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求拋物線C的方程;
(Ⅱ)過M作MN⊥FA,垂足為N,求點(diǎn)N的坐標(biāo);
(Ⅲ)以M為圓心,4為半徑作圓M,點(diǎn)P(m,0)是x軸上的一個(gè)動(dòng)點(diǎn),試討論直線AP與圓M的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C:x2=2py(p>0)與圓O:x2+y2=8相交于A、B兩點(diǎn),且
OA
OB
=0
(O為坐標(biāo)原點(diǎn)),直線l與圓O相切,切點(diǎn)在劣弧AB(含A、B兩點(diǎn))上,且與拋物線C相交于M、N兩點(diǎn),d是M、N兩點(diǎn)到拋物線C的焦點(diǎn)的距離之和.
(Ⅰ)求p的值;
(Ⅱ)求d的最大值,并求d取得最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•武昌區(qū)模擬)如圖,已知拋物線C:y2=4x,過點(diǎn)A(1,2)作拋物線C的弦AP,AQ.
(Ⅰ)若AP⊥AQ,證明直線PQ過定點(diǎn),并求出定點(diǎn)的坐標(biāo);
(Ⅱ)假設(shè)直線PQ過點(diǎn)T(5,-2),請(qǐng)問是否存在以PQ為底邊的等腰三角形APQ?若存在,求出△APQ的個(gè)數(shù)?如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐州一模)如圖,已知拋物線C:y2=4x的焦點(diǎn)為F,過F的直線l與拋物線C交于A(x1,y1)(y1>0),B(x2,y2)兩點(diǎn),T為拋物線的準(zhǔn)線與x軸的交點(diǎn).
(1)若
TA
TB
=1
,求直線l的斜率;
(2)求∠ATF的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線C:y2=4x焦點(diǎn)為F,直線l經(jīng)過點(diǎn)F且與拋物線C相交于A、B兩點(diǎn).
(Ⅰ)若線段AB的中點(diǎn)在直線y=2上,求直線l的方程;
(Ⅱ)若|AB|=20,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案