設(shè)數(shù)列an是一等差數(shù)列,數(shù)列bn的前n項(xiàng)和為Sn=
2
3
(bn-1)
,若a2=b1,a5=b2
(1)求數(shù)列an的通項(xiàng)公式;
(2)求數(shù)列bn的前n項(xiàng)和Sn
(1)∵S1=
2
3
(b1-1)=b1
,∴b1=-2,
S2=
2
3
(b2-1)=b1+b2=-2+b2
,∴b2=4,∴a2=-2,a5=4,(2分)
∵an為一等差數(shù)列,∴公差d=
a5-a2
3
=
6
3
=2
,(4分)
即an=-2+(n-2)•2=2n-6.(6分)
(2)∵Sn+1=
2
3
(bn+1-1)
①,Sn=
2
3
(bn-1)
②,
①-②得Sn+1-Sn=
2
3
(bn+1-bn)=bn+1
,∴bn+1=-2bn,(9分)
∴數(shù)列bn是一等比數(shù)列,公比q=-2,b1=-2,即bn=(-2)n
Sn=
2
3
[(-2)n-1]
.(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是一等差數(shù)列,數(shù)列{bn}的前n項(xiàng)和為Sn=
23
(bn-1)
,若a2=b1,a5=b2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省模擬題 題型:解答題

設(shè)數(shù)列{an}是一等差數(shù)列,數(shù)列{bn}的前n項(xiàng)和為,若a2=b1,a5=b2。
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省蚌埠一中高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)數(shù)列an是一等差數(shù)列,數(shù)列bn的前n項(xiàng)和為,若a2=b1,a5=b2
(1)求數(shù)列an的通項(xiàng)公式;
(2)求數(shù)列bn的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河南省焦作市武陟一中高考第一輪復(fù)習(xí)質(zhì)量檢測(cè)標(biāo)準(zhǔn)試卷3(理科)(解析版) 題型:解答題

設(shè)數(shù)列an是一等差數(shù)列,數(shù)列bn的前n項(xiàng)和為,若a2=b1,a5=b2
(1)求數(shù)列an的通項(xiàng)公式;
(2)求數(shù)列bn的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年吉林省高考數(shù)學(xué)仿真模擬試卷4(文科)(解析版) 題型:解答題

設(shè)數(shù)列an是一等差數(shù)列,數(shù)列bn的前n項(xiàng)和為,若a2=b1,a5=b2
(1)求數(shù)列an的通項(xiàng)公式;
(2)求數(shù)列bn的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案