已知橢圓的左、右焦點分別為,若橢圓上存在一點使,則該橢圓的離心率的取值范圍為          
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)已知方向向量的直線l 過點()和橢圓C:的焦點,且橢圓的中心關(guān)于直線l的對稱點在橢圓C的右準(zhǔn)線上。

(1)求橢圓C的方程;
(2)是否存在過點E(-2,0)的直線m交橢圓C于M、N,滿足(O為原點),若存在求出直線的方程,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓的方程是,橢圓的左頂點為,離心率,傾斜角為的直線與橢圓交于兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)向量),若點在橢圓上,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分)本題共有3個小題,第1小題滿分6分,第2小題滿分6分,第3小題滿分6分.
已知橢圓,常數(shù)、,且
(1)當(dāng)時,過橢圓左焦點的直線交橢圓于點,與軸交于點,若,求直線的斜率;
(2)過原點且斜率分別為)的兩條直線與橢圓的交點為(按逆時針順序排列,且點位于第一象限內(nèi)),試用表示四邊形的面積;
(3)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓G:的兩個焦點F1(-c,0)、F2(c,0),M是橢圓上的一點,且滿足
(Ⅰ)求離心率e的取值范圍;
(Ⅱ)當(dāng)離心率e取得最小值時,點N(0,3)到橢圓上的點的最遠距離為求此時橢圓G的方程;(ⅱ)設(shè)斜率為k(k≠0)的直線l與橢圓G相交于不同的兩點A、B,Q為AB的中點,問A、B兩點能否關(guān)于過點的直線對稱?若能,求出k的取值范圍;若不能,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若方程表示焦點在y軸上的橢圓,則m的取值范圍為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在第一象限,且是橢圓上的一點,△的內(nèi)切圓半徑是,求的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若點是直線被橢圓所截得的線段的中點,則的方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知是以,為焦點的橢圓上的一點,若,,則此橢圓的離心率為____________.

查看答案和解析>>

同步練習(xí)冊答案