【題目】函數(shù)f(x)=loga(x+1),(a>0,a≠1)的圖象經(jīng)過點(﹣ ,﹣2),圖象上有三個點A,B,C,它們的橫坐標依次為t﹣1,t,t+1,(t≥1),記三角形ABC的面積為S(t),

(1)求f(x)的表達式;
(2)求S(1);
(3)是否存在正整數(shù)m,使得對于一切不小于1的t,都有S(t)<m,若存在求的最小值,若不存在,請說明理由.

【答案】
(1)解:∵f(x)=loga(x+1),(a>0,a≠1)的圖象經(jīng)過點(﹣ ,﹣2),

∴﹣2=loga(﹣ +1),∴a=2

∴f(x)=log2x


(2)解:當t=1時,A(0,0),B(1,1),C(2,log23),

∴S(1)= (xB﹣xA)yB+ ({xC﹣xB)(yB+yC)﹣ (xC﹣xA)yC=1﹣log23(3)由圖知:S(t)= [log2t+log2(t+1)]+ [log2(t+1)+log2(t+2)]﹣ [log2t+log2(t+2)}]×2

= log2[{1+ ]

∵對一切不小于1的t,t(t+2)≥3,0< ,

∴1<1+ ,

∴0<log2[{1+ ]≤log2

∴0< log2[{1+ ]≤ log2


(3)解:要使對一切不小于1的t,S(t)<m均成立,只需m>S(t)max,

∴m> log2

又∵m∈N*,∴m=1


【解析】(1)利用f(x)=loga(x+1),(a>0,a≠1)的圖象經(jīng)過點(﹣ ,﹣2),求出a,即可求出f(x)的表達式;(2)S(1)= (xB﹣xA)yB+ ({xC﹣xB)(yB+yC)﹣ (xC﹣xA)yC , 即可求S(1);(3)要使對一切不小于1的t,S(t)<m均成立,只需m>S(t)max , 即可得出結論.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x2﹣1)定義域為[0,3],則f(2x﹣1)的定義域為(
A.[1, ]
B.[0, ]
C.[﹣3,15]
D.[1,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)= 的定義域為(
A.[0,1)
B.[0,2)
C.(1,2)
D.[0,1)∪(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: 的短軸長為2,離心率為 ,設過右焦點的直線l與橢圓C交于不同的兩點A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記 ,若直線l的斜率k≥ ,則λ的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解答題
(1)若拋物線的焦點是橢圓 左頂點,求此拋物線的標準方程;
(2)若某雙曲線與橢圓 共焦點,且以 為漸近線,求此雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】不用計算器求下列各式的值
(1)lg52+ lg8+lg5lg20+(lg2)2;
(2)設2a=5b=m,且 + =2,求m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中直線的傾斜角為,且經(jīng)過點,以坐標系的原點為極點, 軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為,直線與曲線相交于兩點,過點的直線與曲線相交于兩點,且

(1)平面直角坐標系中,求直線的一般方程和曲線的標準方程;

(2)求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,在區(qū)間(0,2)上為增函數(shù)的是(
A.y=3﹣x
B.y=x2+1
C.y=
D.y=﹣x2+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著生活水平的提高,人們對空氣質(zhì)量的要求越來越高,某機構為了解公眾對“車輛限行”的態(tài)度,隨機抽查,并將調(diào)查情況進行整理后制成下表:

年齡(歲)

頻數(shù)

贊成人數(shù)

(1)完成被調(diào)查人員年齡的頻率分布直方圖,并求被調(diào)査人員中持贊成態(tài)度人員的平均年齡約為多少歲?

(2)若從年齡在的被調(diào)查人員中各隨機選取人進行調(diào)查.請寫出所有的基本亊件,并求選取人中恰有人持不贊成態(tài)度的概率.

查看答案和解析>>

同步練習冊答案