如圖AB為圓O直徑,P為圓O外一點,過P點作PC⊥AB,垂是為C,PC交圓O于D點,PA交圓O于E點,BE交PC于F點。
(I)求證:∠PFE=∠PAB (II)求證:CD2=CF·CP
(1)利用平行線的性質(zhì)定理來得到角相等。
(2)根據(jù)三角形的相似來得到線段的比值,即直角三角形BCF∽直角三角形PCA
得到結(jié)論。
【解析】
試題分析:證明:(1)AB為直徑,C在圓O上,BC⊥AC PC⊥AB
∠PAC=90°-∠P,∠PFC=90°-∠P
∴∠PAB=∠PFE
(2)連結(jié)AD、BD則AD⊥BD Rt△ABD中 CD2=AC·CB
直角三角形BCF∽直角三角形PCA
∴CD2=PC·CF
考點:圓內(nèi)的基本性質(zhì)
點評:主要是考查了圓內(nèi)的性質(zhì)以及相似三角形的性質(zhì)的運用,屬于基礎(chǔ)題。
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年海南省瓊海市高三下學(xué)期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖AB為圓O直徑,P為圓O外一點,過P點作PC⊥AB,
垂是為C,PC交圓O于D點,PA交圓O于E點,BE交PC于F點。
(I)求證:∠PFE=∠PAB;
(II)求證:CD2=CF·CP.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
幾何證明選講
如圖AB為圓O直徑,P為圓O外一點,過P點作PC⊥AB,
垂是為C,PC交圓O于D點,PA交圓O于E點,BE交PC于F點。
(I)求證:∠PFE=∠PAB;
(II)求證:CD2=CF·CP.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
幾何證明選講
如圖AB為圓O直徑,P為圓O外一點,過P點作PC⊥AB,垂是為C,PC交圓O于D點,PA交圓O于E點,BE交PC于F點。
(I)求證:∠PFE=∠PAB (II)求證:CD2=CF·CP
2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com