如圖,在直四棱柱ABCD-ABCD中,底面ABCD為等腰梯形,AB//CD,AB=4, BC=CD=2, AA=2, E、E、F分別是棱AD、AA、AB的中點(diǎn)。
(1) 證明:直線EE//平面FCC;
求二面角B-FC-C的余弦值。
(1)在直四棱柱ABCD-ABCD中,取A1B1的中點(diǎn)F1,
連接A1D,C1F1,CF1,因?yàn)锳B=4, CD=2,且AB//CD,
所以CDA1F1,A1F1CD為平行四邊形,所以CF1//A1D,
又因?yàn)镋、E分別是棱AD、AA的中點(diǎn),所以EE1//A1D,
所以CF1//EE1,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052208055462504968/SYS201205220807055625323098_DA.files/image002.png">平面FCC,平面FCC,
所以直線EE//平面FCC.
(2)因?yàn)锳B=4, BC=CD=2, 、F是棱AB的中點(diǎn),所以BF=BC=CF,△BCF為正三角形,取CF的中點(diǎn)O,則OB⊥CF,又因?yàn)橹彼睦庵鵄BCD-ABCD中,CC1⊥平面ABCD,所以CC1⊥BO,所以O(shè)B⊥平面CC1F,過(guò)O在平面CC1F內(nèi)作OP⊥C1F,垂足為P,連接BP,則∠OPB為二面角B-FC-C的一個(gè)平面角, 在△BCF為正三角形中,,在Rt△CC1F中, △OPF∽△CC1F,∵∴,
在Rt△OPF中,,,所以二面角B-FC-C的余弦值為.
解法二:(1)因?yàn)锳B=4, BC=CD=2, F是棱AB的中點(diǎn),
所以BF=BC=CF,△BCF為正三角形, 因?yàn)锳BCD為
等腰梯形,所以∠BAC=∠ABC=60°,取AF的中點(diǎn)M,
連接DM,則DM⊥AB,所以DM⊥CD,
以DM為x軸,DC為y軸,DD1為z軸建立空間直角坐標(biāo)系,
,則D(0,0,0),A(,-1,0),F(,1,0),C(0,2,0),
C1(0,2,2),E(,,0),E1(,-1,1),所以,,設(shè)平面CC1F的法向量為則所以取,則,所以,所以直線EE//平面FCC.
(2),設(shè)平面BFC1的法向量為,則所以,取,則,
,,
所以,由圖可知二面角B-FC-C為銳角,所以二面角B-FC-C的余弦值為
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com