【題目】如圖,在直角梯形ABCD中,BCDC,AEDC,MN分別是AD,BE的中點(diǎn),將三角形ADE沿AE折起,則下列說法正確的是________(填序號).

①不論D折至何位置(不在平面ABC內(nèi)),都有MN∥平面DEC;②不論D折至何位置,都有MNAE;③不論D折至何位置(不在平面ABC內(nèi)),都有MNAB;④在折起過程中,一定存在某個(gè)位置,使ECAD.

【答案】①②④

【解析】試題分析:將三角形ADE沿AE折起后幾何體如圖所示:

因?yàn)?/span>M、N分別是ADBE的中點(diǎn),所以不論D折至何位置(不在平面ABC內(nèi))都有,所以正確;

,所以正確;

,相交,所以相交,所以錯(cuò);

當(dāng)時(shí),因?yàn)?/span>平面,所以存在某個(gè)位置,使,所以正確;故答案為①②④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(2,-1)

(1)求過P點(diǎn)且與原點(diǎn)距離為2的直線l的方程;

(2)求過P點(diǎn)且與原點(diǎn)距離最大的直線l的方程最大距離是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=90°,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG.

(1)求證:EC⊥CD.

(2)求證:AG∥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.

(1)請按字母F、G、H標(biāo)記在正方體相應(yīng)地頂點(diǎn)處(不需要說明理由);

(2)判斷平面BEG與平面ACH的位置關(guān)系.并說明你的結(jié)論;

(3)證明:直線DF平面BEG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,PO⊥平面ABC,BO⊥AC,在圖中與AC垂直的直線有 (  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】AB是☉O的直徑,點(diǎn)C是☉O上的動點(diǎn)(點(diǎn)C不與A,B重合),過動點(diǎn)C的直線VC垂直于☉O所在的平面,D,E分別是VA,VC的中點(diǎn),則下列結(jié)論中正確的是________(填寫正確結(jié)論的序號).

(1)直線DE∥平面ABC.

(2)直線DE⊥平面VBC.

(3)DE⊥VB.

(4)DE⊥AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(0,0),B(1,0),C(2,1),D(0,3),將四邊形ABCDy軸旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=ex(x﹣aex) 恰有兩個(gè)極值點(diǎn)x1 , x2(x1<x2),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個(gè)相等的實(shí)根,且f′(x)=2x+2.
(1)求y=f(x)的表達(dá)式;
(2)求y=f(x)的圖象與兩坐標(biāo)軸所圍成封閉圖形的面積.

查看答案和解析>>

同步練習(xí)冊答案