如圖所示,空間四邊形ABCD中,E、F、G、H是各邊上的點.

已知BD∥平面EFGH且AC∥平面EFGH,求證:四邊形EFGH為平行四邊形.

答案:
解析:

  證明:∵BD∥平面EFGH,BD平面ABD,DB平面CBD,平面ABD∩平面EFGH=EH,平面CBD∩平面EFGH=FG,∴BD∥FG∥EH.

  ∴FG∥EH.同理,可得EF∥HG.

  ∴四邊形EFGH為平行四邊形.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,空間四邊形ABCD中,AB=BD=AD=2,BC=CD=
7
2
AC=
3
2
,延長BC到E,使CE=BC,F(xiàn)是BD的中點,異面直線 AF、DE所成角為( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,空間四邊形ABCD中,E、F、G、H分別為AB、BC、CD、DA上的點,請回答下列問題:
(1)滿足什么條件時,四邊形EFGH為平行四邊形?
(2)滿足什么條件時,四邊形EFGH為矩形?
(3)滿足什么條件時,四邊形EFGH為正方形?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,空間四邊形ABCD中,AB=CD,AB⊥CD,E、F分別為BC、AD的中點,則EF和AB所成的角為
45°
45°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在空間四邊形ABCD中,E、F、G、H依次是AB、BC、CD、DA的中點,若AC⊥BD,且AC=6,BD=4,則EG=____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

  如圖所示,空間四邊形ABCD中,E、F、G分別在AB、BC、CD上,且滿足AE∶EB=CF∶FB=2∶1,CG∶GD=   

3∶1,過E、F、G的平面交AD于H,連接EH.

(1)求AH∶HD;

(2)求證:EH、FG、BD三線共點.

查看答案和解析>>

同步練習冊答案