【題目】某高中嘗試進(jìn)行課堂改革.現(xiàn)高一有兩個成績相當(dāng)?shù)陌嗉墸渲?/span>班級參與改革,班級沒有參與改革.經(jīng)過一段時間,對學(xué)生學(xué)習(xí)效果進(jìn)行檢測,規(guī)定成績提高超過分的為進(jìn)步明顯,得到如下列聯(lián)表.
進(jìn)步明顯 | 進(jìn)步不明顯 | 合計 | |
班級 | |||
班級 | |||
合計 |
(1)是否有的把握認(rèn)為成績進(jìn)步是否明顯與課堂是否改革有關(guān)?
(2)按照分層抽樣的方式從班中進(jìn)步明顯的學(xué)生中抽取人做進(jìn)一步調(diào)查,然后從人中抽人進(jìn)行座談,求這人來自不同班級的概率.
附:,當(dāng)時,有的把握說事件與有關(guān).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知偶函數(shù)在區(qū)間上單調(diào)遞增,且滿,給出下列判斷:
①;②在上是減函數(shù);③的圖象關(guān)于直線對稱;
④函數(shù)在處取得最大值;⑤函數(shù)沒有最小值
其中判斷正確的序號_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近期,某公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付,某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,用x表示活動推出的天數(shù),y表示每天使用掃碼支付的人次(單位:十人次),繪制了如圖所示的散點圖:
(I)根據(jù)散點圖判斷在推廣期內(nèi),與(c,d為為大于零的常數(shù))哪一個適宜作為掃碼支付的人次y關(guān)于活動推出天數(shù)x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(jù)(I)的判斷結(jié)果求y關(guān)于x的回歸方程,并預(yù)測活動推出第8天使用掃碼支付的人次.
參考數(shù)據(jù):
4 | 62 | 1.54 | 2535 | 50.12 | 140 | 3.47 |
其中,
附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,,,.
(1)求證:;
(2)若,,為的中點.
(i)過點作一直線與平行,在圖中畫出直線并說明理由;
(ii)求平面將三棱錐分成的兩部分體積的比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,若對任意給定的,關(guān)于的方程在區(qū)間上總存在唯一的一個解,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的一段圖像如圖所示.
(1)求此函數(shù)的解析式;
(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生喜歡校內(nèi)、校外開展活動的情況,某中學(xué)一課外活動小組在學(xué)校高一年級進(jìn)行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學(xué)生的問卷成績(單位:分)進(jìn)行統(tǒng)計,將數(shù)據(jù)按,,,,分成五組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為類學(xué)生,低于60分的稱為類學(xué)生.
(1)根據(jù)已知條件完成下面列聯(lián)表,能否在犯錯誤的概率不超過的前提下認(rèn)為性別與是否為類學(xué)生有關(guān)系?
類 | 類 | 合計 | |
男 | 110 | ||
女 | 50 | ||
合計 |
(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中類學(xué)生的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列、期望和方差.
參考公式:,其中.
參考臨界值:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購是非常方便的購物方式,為了了解網(wǎng)購在我市的普及情況,某調(diào)查機構(gòu)進(jìn)行了有關(guān)網(wǎng)購的調(diào)查問卷,并從參與調(diào)查的市民中隨機抽取了男女各100人進(jìn)行分析,從而得到表(單位:人)
經(jīng)常網(wǎng)購 | 偶爾或不用網(wǎng)購 | 合計 | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合計 |
(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯誤的概率不超過0.01的前提下認(rèn)為我市市民網(wǎng)購與性別有關(guān)?
(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購的概率;
②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機抽取10人贈送禮品,記其中經(jīng)常網(wǎng)購的人數(shù)為,求隨機變量的數(shù)學(xué)期望和方差.
參考公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求函數(shù)的最大值;
(2)令,()其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實數(shù)解,求正數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com