nÎN*,且n>1,求證:。

答案:
解析:

證明:(1)當n=2時,左==右,∴ 原不等式成立。

2)設(shè)n=k(kÎN*,k³2)時不等式成立,即

,

n=k+1時,

(2k+2)2>(2k+2)2-1=(2k+1)(2k+3)

。∴ ,即n=k+1,原不等式也成立。

由(1)、(2)知,對一切nÎN*,且n>1,原不等式成立。


提示:

注意放縮。


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:數(shù)學教研室 題型:044

nÎN*,且n>1,求證:。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分12分)     已知函數(shù).

(Ⅰ) 求f 1(x);

(Ⅱ) 若數(shù)列{an}的首項為a1=1,(nÎN+),求{an}的通項公式an;

(Ⅲ)  設(shè)bn=(32n-8),求數(shù)列{bn}的前項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分12分)     已知函數(shù).

(Ⅰ) 求f 1(x);

(Ⅱ) 若數(shù)列{an}的首項為a1=1,(nÎN+),求{an}的通項公式an;

(Ⅲ) 設(shè)bn=an+12+an+22+¼+a2n+12,是否存在最小的正整數(shù)k,使對于任意nÎN+bn<成立. 若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆安徽省高一元月文理分班考試數(shù)學 題型:解答題

 

(13分,理科做)已知函數(shù)的定義域為,且同時滿足:①;②恒成立;③若,則有

(1)試求函數(shù)的最大值和最小值;

(2)試比較的大小N);

(3)某人發(fā)現(xiàn):當x=(nÎN)時,有f(x)<2x+2.由此他提出猜想:對一切xÎ(0,1,都有,請你判斷此猜想是否正確,并說明理由.

 

 

查看答案和解析>>

同步練習冊答案