20.已知f(x)=alnx+$\frac{1}{2}{x^2}$(a>0),若對(duì)任意兩個(gè)不等的正實(shí)數(shù)x1,x2都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$≥2恒成立,則a的取值范圍是( 。
A.(1,+∞)B.[1,+∞)C.(0,1]D.(0,1)

分析 依題意知,f′(x)=$\frac{a}{x}$+x≥2(x>0)恒成立?a≥2x-x2恒成立,令g(x)=2x-x2=-(x-1)2+1,利用二次函數(shù)的對(duì)稱(chēng)性、單調(diào)性與最值,可求得g(x)max,于是可得a的取值范圍.

解答 解:∵f(x)=alnx+$\frac{1}{2}$x2(a>0),對(duì)任意兩個(gè)不等的正實(shí)數(shù)x1、x2都有>2恒成立,
∴f′(x)=$\frac{a}{x}$+x≥2(x>0)恒成立,
∴a≥2x-x2恒成立,令g(x)=2x-x2=-(x-1)2+1,
則a≥g(x)max
∵g(x)=2x-x2為開(kāi)口方向向下,對(duì)稱(chēng)軸為x=1的拋物線,
∴當(dāng)x=1時(shí),g(x)=2x-x2取得最大值g(1)=1,
∴a≥1.
即a的取值范圍是[1,+∞).
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)恒成立問(wèn)題,考查導(dǎo)數(shù)的幾何意義與二次函數(shù)的對(duì)稱(chēng)性、單調(diào)性與最值,考查轉(zhuǎn)化思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知不等式ax2+bx-1>0的解集為{x|3<x<4},則實(shí)數(shù)a=-$\frac{1}{12}$;函數(shù)y=x2-bx-a的所有零點(diǎn)之和等于$\frac{7}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某種證件的獲取規(guī)則是:參加科目A和科目B的考試,每個(gè)科目考試的成績(jī)分為合格與不合格,每個(gè)科目最多只有2次考試機(jī)會(huì),且參加科目A考試的成績(jī)?yōu)楹细窈螅拍軈⒓涌颇緽的考試;參加某科目考試的成績(jī)?yōu)楹细窈,不再參加該科目的考試,參加兩個(gè)科目考試的成績(jī)均為合格才能獲得該證件.現(xiàn)有一人想獲取該證件,已知此人每次參加科目A考試的成績(jī)?yōu)楹细竦母怕适?\frac{2}{3}$,每次參加科目B考試的成績(jī)?yōu)楹细竦母怕适?\frac{1}{2}$,且各次考試的成績(jī)?yōu)楹细衽c不合格均互不影響.假設(shè)此人不放棄按規(guī)則所給的所有考試機(jī)會(huì),記他參加考試的次數(shù)為X.
(Ⅰ)求X的所有可能取的值;
(Ⅱ)求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=x2+mx+n,且y=f(x+2)的圖象關(guān)于y軸對(duì)稱(chēng),則大小關(guān)系正確的是( 。
A.f($\frac{5}{2}$)<f(1)<f($\frac{7}{2}$)B.f(1)<f($\frac{7}{2}$)<f($\frac{5}{2}$)C.f($\frac{7}{2}$)<f(1)<f($\frac{5}{2}$)D.f($\frac{7}{2}$)<f($\frac{5}{2}$)<f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知極坐標(biāo)系與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸為正半軸,曲線C1的直角坐標(biāo)方程為$\frac{{x}^{2}}{3}+{y}^{2}$=1,直線l的直角坐標(biāo)方程為x+y-4=0,曲線C2的極坐標(biāo)方程為$ρ=\frac{1}{1-cosθ}$.
(Ⅰ)在曲線C1上求一點(diǎn)P,使得點(diǎn)P到直線l的距離最大;
(Ⅱ)過(guò)極點(diǎn)O作互相垂直的兩條直線分別交曲線C2于A,B和C,D四點(diǎn),求|AB|+|CD|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知$\overrightarrow a,\;\overrightarrow b$為同向單位向量,若$\overrightarrow a•\overrightarrow b=\frac{{1+4{k^2}}}{4k}$(k>0),則k=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,莖葉圖記錄了某城市甲、乙兩個(gè)觀測(cè)點(diǎn)連續(xù)三天觀測(cè)到的空氣質(zhì)量指數(shù)(AQI).乙觀測(cè)點(diǎn)記錄中有一個(gè)數(shù)字模糊無(wú)法確認(rèn),已知該數(shù)是0,1,…,9中隨機(jī)的一個(gè)數(shù),并在圖中以a表示.
(Ⅰ)求乙觀測(cè)點(diǎn)記錄的AQI的平均值超過(guò)甲觀測(cè)點(diǎn)記錄的AQI的平均值的概率;
(Ⅱ)當(dāng)a=2時(shí),分別從甲、乙兩觀測(cè)點(diǎn)記錄的數(shù)據(jù)中各隨機(jī)抽取一天的觀測(cè)值,記這兩觀測(cè)值之差的絕對(duì)值為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a2=4,a42=4a1a5
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2a1+log2a2+log2a3+…+log2an,求數(shù)列{$\frac{1}{_{n}}$}的前n項(xiàng)和Sn,并證明:Sn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知拋物線C:y2=2px(p>0)過(guò)點(diǎn)M(m,2),其焦點(diǎn)為F,且|MF|=2.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)E為y軸上異于原點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)E作不經(jīng)過(guò)原點(diǎn)的兩條直線分別與拋物線C和圓F:(x-1)2+y2=1相切,切點(diǎn)分別為A,B,求證:直線AB過(guò)定點(diǎn)F(1,0).

查看答案和解析>>

同步練習(xí)冊(cè)答案