設(shè)數(shù)列{an}的前n項和為Sn,已知a1=2,a2=8,Sn+1+4Sn-1=5Sn(n≥2),Tn是數(shù)列{log2an}的前n項和.
(1)求數(shù)列{an}的通項公式;
(2)求Tn;
(3)求滿足(1-
1
T2
)(1-
1
T3
)…(1-
1
Tn
)>
2013
2014
的最大正整數(shù)n的值.
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件得Sn+1-Sn=4(Sn-Sn-1),從而an+1=4an,由此推導出數(shù)列{an}是以a1=2為首項,公比為4的等比數(shù)列.從而an=2•4n-1=22n-1
(2)由log2an=log222n-1=2n-1,能求出數(shù)列{log2an}的前n項和.
(3)(1-
1
T2
)(1-
1
T3
)…(1-
1
Tn
)=
n+1
2n
,令
n+1
2n
2013
2014
,能求出滿足條件的最大正整數(shù)n的值為1.
解答: 解:(1)∵當n≥2時,Sn+1+4Sn-1=5Sn(n≥2),
∴Sn+1-Sn=4(Sn-Sn-1),
∴an+1=4an,∵a1=2,a2=8,
∴a2=4a1,
∴數(shù)列{an}是以a1=2為首項,公比為4的等比數(shù)列.
an=2•4n-1=22n-1
(2)由(1)得:log2an=log222n-1=2n-1,
∴Tn=log2a1+log2a2+…+log2an
=1+3+…+(2n-1)
=
n(1+2n-1)
2
=n2
(3)(1-
1
T2
)(1-
1
T3
)…(1-
1
Tn

=(1-
1
22
)(1-
1
32
)…(1-
1
n2

=
22-1
22
×
32-1
32
×
42-1
42
×…×
n2-1
n2

=
1×3×2×4×3×5×…×(n-1)(n+1)
22×32×42×…×n2

=
n+1
2n

n+1
2n
2013
2014
,解得:n<
1007
1006

故滿足條件的最大正整數(shù)n的值為1.
點評:本題考查數(shù)列的通項公式的求法,考查數(shù)列的前n項和的求法,考查最大的正整數(shù)的求法,解題時要認真審題,注意構(gòu)造法的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=xlnx的減區(qū)間為(  )
A、(-∞,
1
e
B、(
1
e
,+∞)
C、(0,
1
e
D、(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)求PB和平面PAD所成的角的大。
(2)證明:AE⊥平面PCD;
(3)求二面角A-PD-C得到正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an},滿足a1=2,an-an-1-2n=0(n≥2,n∈N).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
1
a1
+
1
a2
+…+
1
an
,?n∈N*,m∈[-1,1]
,t2-2mt-
15
2
bn
恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}的各項均為正數(shù),且2a1,
1
2
,3a2成等差數(shù)列,a2,
1
3
a3,a6成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)已知bn=log3
1
an
,記Sn=b1+b2+…+bn,Tn=1+
1
1+
1
3
+
1
1+
1
3
+
1
6
+…+
1
1+
1
3
+
1
6
+…+
1
Sn
,求證:T2014<1013.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,直線l:y=
3
與橢圓C相切.
(1)求橢圓C的方程;
(2)設(shè)AB是橢圓C上兩個動點,點P(-1,
3
2
)滿足
PA
+
PB
PO
(0<λ<4且λ≠2),求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標xOy中,不等式組
-1≤x≤2
0≤y≤2
表示的平面區(qū)域為W,從區(qū)域W中隨機任取一點M(x,y).
(1)若x∈R,y∈R,求|OM|≥1的概率;
(2)若x∈Z,y∈Z,求點M位于第一象限的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.
(Ⅰ)求異面直線AD1與BD所成的角的余弦值;
(Ⅱ)求直線B1C1與平面ACD1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列六種圖象變換方法:
①圖象上所有點的縱坐標不變,橫坐標縮短到原來的
1
2
;
②圖象上所有點的縱坐標不變,橫坐標伸長到原來的2倍;
③圖象向右平移
π
3
個單位;
④圖象向左平移
π
3
個單位;
⑤圖象向右平移
3
個單位;
⑥圖象向左平移
3
個單位.
請用上述變換中的兩種變換,將函數(shù)y=sinx的圖象變換到函數(shù)y=sin(
x
2
+
π
3
)的圖象,那么這兩種變換正確的標號是
 
(要求按變換先后順序填上一種你認為正確的標號即可)

查看答案和解析>>

同步練習冊答案