5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+5,x≤-1}\\{{x}^{2},-1<x<1}\\{2x,x≥1}\end{array}\right.$.
(1)求f(-3)、f[f(-3)];  
(2)若f(a)=$\frac{1}{2}$,求a的值.

分析 (1)直接利用分段函數(shù)求f(-3)、f[f(-3)];  
(2)若f(a)=$\frac{1}{2}$,分類討論,即可求a的值.

解答 解:(1)f(-3)=2…2分
f[f(-3)]=f(2)=4…4分
(2)當(dāng)a≤-1時(shí),a+5=$\frac{1}{2}$,∴a=-$\frac{9}{2}$;…6分
當(dāng)-1<a<1時(shí),a2=$\frac{1}{2}$,∴a=$±\frac{\sqrt{2}}{2}$…8分
當(dāng)a≥1時(shí),2a=$\frac{1}{2}$,∴a=$\frac{1}{4}$ (舍去)
綜上可得a=-$\frac{9}{2}$ 或a=$±\frac{\sqrt{2}}{2}$…10分.

點(diǎn)評(píng) 本題考查分段函數(shù),考查函數(shù)值的計(jì)算,考查分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某人2010年1月1日到銀行存入a元,若每年利息為r,按復(fù)利計(jì)算利息,則到2020年1月1日可取回的本息和為a(1+r)10元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的右準(zhǔn)線與兩漸近線交于A,B兩點(diǎn),它右焦點(diǎn)為F,若△ABF為等邊三角形,則雙曲線C的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=$\frac{2x-3}{2x+1}$+a在[0,$\frac{3}{2}$]的值域?yàn)榧螦,函數(shù)g(x)=$\sqrt{x+2}$+$\sqrt{2-x}$的定義域?yàn)榧螧.
(1)若a=0,求∁R(A∩B);
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知三棱錐P-ABC的每個(gè)頂點(diǎn)都在球O的表面上,PB⊥底面ABC,AC=2,PB=6,且sin∠ABC=$\frac{1}{4}$,則球O的表面積為( 。
A.80πB.96πC.100πD.144π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題中正確的是( 。
A.若α>β,則sinα>sinβ
B.命題:“?x>1,x2>1”的否定是“?x≤1,x2≤1”
C.直線ax+y+2=0與ax-y+4=0垂直的充要條件為a=±1
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知Sn為等差數(shù)列{an}的前n項(xiàng)和,a1=25,a4=16,當(dāng)n=9時(shí),Sn取得最大值117.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=m(x+m+5),g(x)=2x-2,若任意的x∈R,總有f(x)<0或g(x)<0,則m的取值范圍是-6<m<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)l是直線,α,β是兩個(gè)不同的平面,則下列四個(gè)命題:
(1)若l∥α,l∥β,則α∥β     
(2)若l∥α,l⊥β,則α⊥β
(3)若α⊥β,l⊥α,則l⊥β     
(4)若α⊥β,l∥α,則l⊥β
中真命題有( 。﹤(gè).
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案