【題目】已知函數(shù),曲線在點處的切線方程為

(1)求的值;

(2)求上的單調區(qū)間;

(3)求上的最大值.

【答案】(1)a=2,b=-4;(2)的增區(qū)間為 ;減區(qū)間為 ;(3)13.

【解析】

1)先對f(x)求導,把x=1代入導數(shù)式即可解出曲線在 處的斜率k;把x=1代入原函數(shù)即可解出切點縱坐標,建立一個關于ab的二元一次方程組,解方程可得a,b的值;

2)求出fx)的導數(shù),由導數(shù)大于0,可得增區(qū)間;導數(shù)小于0,可得減區(qū)間;

3)分別求出fx)在區(qū)間[3,1]上的極值和區(qū)間端點處的函數(shù)值,比較大小找出最大的值,即為函數(shù)在該閉區(qū)間上的最大值。

1 函數(shù) 的導數(shù)為

曲線 在點 處的切線斜率為 ,

切點為

由切線方程為 ,可得 ,

解得

2 函數(shù) 的導數(shù) ,由 ,可得 ;由 ,可得 .則 f(x) 的增區(qū)間為 , ;減區(qū)間為

3 由(2)可得 f(x) 的兩極值點-2, ,

, ,

,

y=f(x) 上的最大值為 13

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了名觀眾進行調查,如圖是根據調查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖,將日均收看該體育節(jié)目時間不低于分鐘的觀眾稱為體育迷.

(1)以頻率為概率,若從這名觀眾中隨機抽取名進行調查,求這名觀眾中體育迷人數(shù)的分布列;

(2)若抽取人中有女性人,其中女體育迷有人,完成答題卡中的列聯(lián)表并判斷能否在犯錯概率不超過的前提下認為是體育迷與性別有關系嗎?

附表及公式:

,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究機構對春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進行統(tǒng)計分析,得出下表數(shù)據.

x

4

5

7

8

y

2

3

5

6

(1)請根據上表提供的數(shù)據,用最小二乘法求出y關于x的線性回歸方程;

(2)試根據(1)求出的線性回歸方程,預測燃放煙花爆竹的天數(shù)為9的霧霾天數(shù).

相關公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=x2的圖象在點(x0 , x02)處的切線為l,若l也與函數(shù)y=lnx,x∈(0,1)的圖象相切,則x0必滿足(
A.0<x0
B. <x0<1
C. <x0
D. <x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=logaxa1)在[a,2a]上的最大值是最小值的2倍.

1)若函數(shù)gx=f3x2-mx+5)在區(qū)間[-1,+∞)上是增函數(shù),求實數(shù)m的取值范圍;

2)設函數(shù)Fx=f)(2x),且關于x的方程Fx=k[,4]上有解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,離心率為,且經過點,直線交橢圓于不同的兩點

(1)求橢圓的方程;

(2)求的取值范圍;

(3)若直線不過點,求證:直線的斜率互為相反數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△中,已知,直線經過點

(Ⅰ)若直線:與線段交于點,且為△的外心,求△的外接圓的方程;

(Ⅱ)若直線方程為,且△的面積為,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,側面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且點O為AC中點. (Ⅰ)證明:A1O⊥平面ABC;
(Ⅱ)求二面角A﹣A1B﹣C1的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關于x的方程(x﹣1)4+mx﹣m﹣2=0各個實根x1 , x2…xk(k≤4,k∈N*)所對應的點(xi),(i=1,2,3…k)均在直線y=x的同側,則實數(shù)m的取值范圍是( 。
A.(﹣1,7)
B.(﹣∞,﹣7)U(﹣1,+∞)
C.(﹣7,1)
D.(﹣∞,1)U(7,+∞)

查看答案和解析>>

同步練習冊答案