【題目】已知函數(shù)f(x)=(x2+x+m)ex(其中m∈R,e為自然對(duì)數(shù)的底數(shù)).若在x=﹣3處函數(shù)f (x)有極大值,則函數(shù)f (x)的極小值是

【答案】-1
【解析】解:f(x)=(x2+x+m)ex , f′(x)=(x2+3x+m+1)ex
若f(x)在x=﹣3處函數(shù)f (x)有極大值,
則f′(﹣3)=0,解得:m=﹣1,
故f(x)=(x2+x﹣1)ex ,
f′(x)=(x2+3x)ex ,
令f′(x)>0,解得:x>0,
令f′(x)<0,解得:x<﹣3,
故f(x)在(﹣∞,﹣3)遞增,在(﹣3,0)遞減,在(0,+∞)遞增,
故f(x)極小值=f(0)=﹣1,
所以答案是:﹣1.
【考點(diǎn)精析】本題主要考查了函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,且滿足(2b﹣a)cosC=ccosA. (Ⅰ)求角C的大小;
(Ⅱ)設(shè)y=﹣4 sin2 +2sin(C﹣B),求y的最大值并判斷當(dāng)y取得最大值時(shí)△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為迎接校慶,我校準(zhǔn)備在直角三角形ABC內(nèi)的空地上植造一塊“綠地△ABD”,規(guī)劃在△ABD的內(nèi)接正方形BEFG內(nèi)種花,其余地方種草,若AB=a,∠DAB=θ,種草的面積為S1 , 種花的面積為S2 , 比值 稱為“規(guī)劃和諧度”.

(1)試用a,θ表示S1 , S2;
(2)若a為定值,BC足夠長(zhǎng),當(dāng)θ為何值時(shí),“規(guī)劃和諧度”有最小值,最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰直角△ABO中,設(shè) = = ,| |=| |=1,C為AB上靠近A點(diǎn)的三等分點(diǎn),過(guò)C作AB的垂線l,設(shè)P為垂線上任一點(diǎn), = ,則 )=(
A.
B.﹣
C.﹣
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,設(shè)向量 =(a,c), =(cosC,cosA).
(1)若 ,a= c,求角A;
(2)若 =3bsinB,cosA= ,求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}為等差數(shù)列,a1=2,{an}的前n項(xiàng)和為Sn , 數(shù)列{bn}為等比數(shù)列,且a1b1+a2b2+a3b3+…+anbn=(n﹣1)2n+2+4對(duì)任意的n∈N*恒成立.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)是否存在非零整數(shù)λ,使不等式sin 對(duì)一切n∈N*都成立?若存在,求出λ的值;若不存在,說(shuō)明理由.
(3)各項(xiàng)均為正整數(shù)的無(wú)窮等差數(shù)列{cn},滿足c39=a1007 , 且存在正整數(shù)k,使c1 , c39 , ck成等比數(shù)列,若數(shù)列{cn}的公差為d,求d的所有可能取值之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若acosA=bsinb,且 ,則sinA+sinC的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某石化集團(tuán)獲得了某地深海油田區(qū)塊的開發(fā)權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井,取得了地質(zhì)資料,進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位進(jìn)行全面勘探,由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用,勘探初期數(shù)據(jù)資料見(jiàn)如表:

(參考公式和計(jì)算結(jié)果: , ,

(1)1~6號(hào)井位置線性分布,借助前5組數(shù)據(jù)(坐標(biāo))求得回歸直線方程為的值,并估計(jì)的預(yù)報(bào)值;

(2)現(xiàn)準(zhǔn)備勘探新井,若通過(guò)1,3,57號(hào)并計(jì)算出的(, 精確到0.01),設(shè), ,當(dāng)均不超過(guò)10%時(shí),使用位置最接近的已有舊井,否則在新位置打開,請(qǐng)判斷可否使用舊井?

(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=asinxcosx﹣ acos2x+ a+b(a>0)
(1)寫出函數(shù)的單調(diào)遞減區(qū)間;
(2)設(shè)x∈[0, ],f(x)的最小值是﹣2,最大值是 ,求實(shí)數(shù)a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案