【題目】如圖是秦九韶算法的一個程序框圖,則輸出的S為(
A.a1+x0(a3+x0(a0+a2x0))的值
B.a3+x0(a2+x0(a1+a0x0))的值
C.a0+x0(a1+x0(a2+a3x0))的值
D.a2+x0(a0+x0(a3+a1x0))的值

【答案】C
【解析】解:模擬程序的運(yùn)行,可得 k=3,S=a3
滿足條件k>0,執(zhí)行循環(huán)體,k=2,S=a2+a3x0
滿足條件k>0,執(zhí)行循環(huán)體,k=1,S=a1+x0(a2+a3x0),
滿足條件k>0,執(zhí)行循環(huán)體,k=0,S=a0+x0(a1+x0(a2+a3x0)),
不滿足條件k>0,退出循環(huán),輸出S的值為a0+x0(a1+x0(a2+a3x0)).
故選:C.
模擬程序的運(yùn)行,依次寫出每次循環(huán)得到的k,S的值,當(dāng)k=0時,不滿足條件k>0,退出循環(huán),輸出S的值為a0+x0(a1+x0(a2+a3x0)).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中, 在線段上運(yùn)動且不與, 重合,給出下列結(jié)論:

;

平面;

二面角的大小隨點的運(yùn)動而變化;

三棱錐在平面上的投影的面積與在平面上的投影的面積之比隨點的運(yùn)動而變化;

其中正確的是(

A. ①③④ B. ①③

C. ①②④ D. ①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正三角形中,過其中心作邊的平行線,分別交,,,將沿折起到的位置,使點在平面上的射影恰是線段的中點,則二面角的平面角的大小是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α、β是三次函數(shù)f(x)= x3+ ax2+2bx(a,b∈R)的兩個極值點,且α∈(0,1),β∈(1,2),則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項數(shù)列{an}的前n項和為Sn,且an和Sn滿足:4Sn=(an+1)2 (n=1,2,3……),

(1)求{an}的通項公式;(2)設(shè)bn ,求{bn}的前n項和Tn

(3)在(2)的條件下,對任意n∈N*,Tn都成立,求整數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O,A,B三地在同一水平面內(nèi),A地在O地正東方向2km處,B地在O地正北方向2km處,某測繪隊員在A、B之間的直線公路上任選一點C作為測繪點,用測繪儀進(jìn)行測繪,O地為一磁場,距離其不超過 的范圍內(nèi)對測繪儀等電子儀器形成干擾,使測量結(jié)果不準(zhǔn)確,則該測繪隊員能夠得到準(zhǔn)確數(shù)據(jù)的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖5,在四棱錐P-ABCD中,PA平面ABCD,AB=4,BC=3,AD=5,DAB=ABC=90°,E是CD的中點.

)證明:CD平面PAE;

)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的方程為,P在橢圓上,橢圓的左頂點為A,左、右焦點分別為的面積是的面積的倍.

(1)求橢圓C的方程;(2)直線與橢圓C交于M,N,連接并延長交橢圓C于D,E,連接DE,指出之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=(x+a)lnx,g(x)= ,已知曲線y=f(x)在x=1處的切線過點(2,3).
(1)求實數(shù)a的值.
(2)是否存在自然數(shù)k,使得函數(shù)y=f(x)﹣g(x)在(k,k+1)內(nèi)存在唯一的零點?如果存在,求出k;如果不存在,請說明理由.
(3)設(shè)函數(shù)h(x)=min{f(x),g(x)},(其中min{p,q}表示p,q中的較小值),對于實數(shù)m,x0∈(0,+∞),使得h(x0)≥m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案