【題目】某船舶制造廠根據(jù)以往的生產銷售經驗得到下面有關生產銷售的統(tǒng)計規(guī)律:每生產船舶艘,其總成本為(千萬元),其中固定成本為2.8千萬元,并且每生產1艘的生產成本為1千萬元(總成本=固定成本+生產成本).銷售收入(千萬元)滿足:,假定該船舶制造廠產銷平衡(即生產的船舶都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)的解析式(利潤=銷售收入-總成本);
(2)該廠生產多少艘船舶時,可使盈利最多?
科目:高中數(shù)學 來源: 題型:
【題目】己知橢圓C:的左右焦點分別為F1,F(xiàn)2,直線l:y=kx+m與橢圓C交于A,B兩點.O為坐標原點.
(1)若直線l過點F1,且|AB|=,求k的值;
(2)若以AB為直徑的圓過原點O,試探究點O到直線AB的距離是否為定值?若是,求出該定值;若不是,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在正方體中,E是棱的中點,F是側面內的動點,且平面,給出下列命題:
點F的軌跡是一條線段;與不可能平行;與BE是異面直線;平面不可能與平面平行.
其中正確的個數(shù)是
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記Sn為等比數(shù)列的前n項和,已知S2=2,S3=-6.
(1)求的通項公式;
(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)設,求函數(shù)的單調區(qū)間;
(Ⅱ)若,函數(shù),試判斷是否存在,使得為函數(shù)的極小值點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐中,AE垂直于平面,,,點F為平面ABC內一點,記直線EF與平面BCE所成角為,直線EF與平面ABC所成角為.
Ⅰ求證:平面ACE;
Ⅱ若,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com