設(shè)f0(x)=x•ex,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x)(n∈N+).
(1)請寫出fn(x)的表達(dá)式(不需證明);
(2)求fn(x)的極小值;
(3)設(shè)gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值為a,fn(x)的最小值為b,求a-b的最小值.
分析:(1)根據(jù)題意依次寫出f1(x),f2(x),f3(x),…,根據(jù)體現(xiàn)的規(guī)律性,猜想出fn(x)的表達(dá)式;
(2)求出當(dāng)函數(shù)fn(x)=(x+n+1)•ex,令導(dǎo)函數(shù)等于0,取出x的值,判斷x左右的單調(diào)性,即可求得fn(x)的極小值;
(3)根據(jù)二次函數(shù)求出gn(x)的最大值為a,根據(jù)(2)可知fn(x)的最小值為b,則a-b=(n-3)2+e-(n+1),利用數(shù)列的單調(diào)性,確定出a-b的最小值.
解答:解:(1)由題意可得,f1(x)=(x+1)•ex,f2(x)=(x+2)•ex,f3(x)=(x+3)•ex,…,
猜測出fn(x)的表達(dá)式fn(x)=(x+n)•ex (n∈N*)
(2)由(1)可知,fn(x)=(x+n)•ex (n∈N*),
fn(x)=(x+n+1)•ex,
令f′n(x)=0,解得x=-(n+1),
∵當(dāng)x>-(n+1)時(shí),f'n(x)>0,當(dāng)x<-(n+1)時(shí),f'n(x)<0,
∴當(dāng)x=-(n+1)時(shí),fn(x)取得極小值fn(-(n+1))=-e-(n+1),
即fn(x)的極小值為yn=-e-(n+1)  (n∈N*)
(3)∵gn(x)=-x2-2(n+1)x-8n+8,
∴當(dāng)x=-(n+1)時(shí),gn(x)取最大值,即a=gn(-(n+1))=(n-3)2
又∵b=fn(-(n+1))=-e-(n+1),
∴a-b=(n-3)2+e-(n+1),
問題轉(zhuǎn)化為求cn=(n-3)2+e-(n+1)的最小值.
解法1(構(gòu)造函數(shù)):
令h(x)=(x-3)2+e-(x+1)(x≥0),
則h'(x)=2(x-3)-e-(x+1),又h(x)在區(qū)間[0,+∞)上單調(diào)遞增,
∴h'(x)≥h'(0)=-6-e-1,
又∵h(yuǎn)'(3)=-e-4<0,h'(4)=2-e-5>0,
∴存在x0∈(3,4)使得h'(x0)=0,
又h'(x)在區(qū)間[0,+∞)上單調(diào)遞增,
∴0≤x<x0時(shí),h'(x0)<0,當(dāng)x>x0時(shí),h'(x0)>0,
即h(x)在區(qū)間[x0,+∞)上單調(diào)遞增,在區(qū)間[0,x0)上單調(diào)遞減,
∴(h(x))min=h(x0).
又∵h(yuǎn)(3)=e-4,h(4)=1+e-5,則h(4)>h(3),
∴當(dāng)n=3時(shí),a-b取得最小值e-4′
解法2(利用數(shù)列的單調(diào)性):
cn+1-cn=2n-5+
1
en+2
-
1
en+1
,
∴當(dāng)n≥3時(shí),2n-5≥1,
1
en+2
>0
,
1
en+1
<1
,
2n-5+
1
en+2
-
1
en+1
>0
,
∴cn+1>cn
c1=4+
1
e2
,c2=1+
1
e3
,c3=
1
e4
,c1>c2>c3,
∴當(dāng)n=3時(shí),a-b取得最小值e-4
點(diǎn)評:本題考察了導(dǎo)數(shù)與數(shù)列的綜合應(yīng)用,涉及了求函數(shù)的極小值和最小值.同時(shí)考查了二次函數(shù)的求最值問題,二次函數(shù)的最值問題要考慮拋物線的開口方向和對稱軸的位置關(guān)系.對于數(shù)列問題的最值,一般應(yīng)用數(shù)列的單調(diào)性進(jìn)行研究.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f0(x)=xex,f1(x)=f0(x)f2(x)=f1(x),…fn(x)=fn-1(x),n∈N*
(1)請寫出fn(x)的表達(dá)式(不需要證明);
(2)求fn(x)的極小值;
(3)設(shè)gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值為a,fn(x)的最小值為b,證明:a-b≥e-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•江門二模)設(shè)函數(shù)f0(x)=x2e-
12
x
,記f0(x)的導(dǎo)函數(shù)f'0(x)=f1(x),f1(x)的導(dǎo)函數(shù)f'1(x)=f2(x),f2(x)的導(dǎo)函數(shù)f'2(x)=f3(x),…,fn-1(x)的導(dǎo)函數(shù)f'n-1(x)=fn(x),n=1,2,….
(1)求f3(0);
(2)用n表示fn(0);
(3)設(shè)Sn=f2(0)+f3(0)+…+fn+1(0),是否存在n∈N*使Sn最大?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江門二模 題型:解答題

設(shè)函數(shù)f0(x)=x2e-
1
2
x
,記f0(x)的導(dǎo)函數(shù)f'0(x)=f1(x),f1(x)的導(dǎo)函數(shù)f'1(x)=f2(x),f2(x)的導(dǎo)函數(shù)f'2(x)=f3(x),…,fn-1(x)的導(dǎo)函數(shù)f'n-1(x)=fn(x),n=1,2,….
(1)求f3(0);
(2)用n表示fn(0);
(3)設(shè)Sn=f2(0)+f3(0)+…+fn+1(0),是否存在n∈N*使Sn最大?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案