若△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且a2=b2+c2-bc,則角A的大小為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式數(shù)學公式
B
分析:由條件利用余弦定理求得,從而求得角A的大小.
解答:∵△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且a2=b2+c2-bc,由余弦定理可得cosA==
∴A=,
故選B.
點評:本題主要考查余弦定理的應用,已知三角函數(shù)值求角的大小,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•寧城縣模擬)若△ABC的內(nèi)角A,B,C所對的邊a,b,c滿足(a+b)2-c2=4,且C=60°,則a+b的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若△ABC的內(nèi)角A、B、C滿足sinA:sinB:sinC=2:3:3,則cosB(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若△ABC的內(nèi)角A、B、C所對的邊a、b、c滿足(a+b)2-c2=4,且C=60°,則a+b的最小值為
4
3
3
4
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若△ABC的內(nèi)角A滿足sin2A=-
2
3
,則cosA-sinA=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若△ABC的內(nèi)角A、B、C滿足6sinA=4sinB=3sinC,則cosB=
 

查看答案和解析>>

同步練習冊答案