已知函數(shù)f(x)=x3-3x,若對(duì)于任意實(shí)數(shù)α和β恒有不等式|f(2sinα)-f(2sinβ)|≤
1
m+1
成立,則m的取值范圍是
 
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,函數(shù)恒成立問(wèn)題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:將不等式恒成立轉(zhuǎn)化為求|f(x)max-f(x)min|≤
1
m+1
,即可得到結(jié)論.
解答: 解:|f(2sinα)-f(2sinβ)|≤m恒成立,
等價(jià)于|f(x)max-f(x)min|≤
1
m+1

由于2sinα∈[-2,2],2sinβ∈[-2,2],
故只需求出f(x)=x3-3x在[-2,2]上的最值,
而f′(x)=3x2-3,
由f′(x)=0得x=±1
列表如下:
 x -2  (-2,-1) -1  (-1,1)  1  (1,2)  2
 f'(x) + -   +  
 f(x) -2  遞增  2 遞減  -2 遞增   2
∴f(x)max=2,f(x)min=-2,
∴|f(x)max-f(x)min|=4,
即4≤
1
m+1
,
∴0<m+1≤
1
4

即-1<m≤-
3
4

∴m的取值范圍是(-1,-
3
4
],
故答案為:(-1,-
3
4
].
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)求函數(shù)的最值問(wèn)題,利用不等式恒成立的等價(jià)條件,將條件轉(zhuǎn)化為求|f(x)max-f(x)min|≤
1
m+1
是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,2)在拋物線Γ:y2=2px上.
(1)若△ABC的三個(gè)頂點(diǎn)都在拋物線Γ上,記三邊AB,BC,CA所在直線的斜率分別為k1,k2,k3,求
1
k1
-
1
k2
+
1
k3
的值;
(2)若四邊形ABCD的四個(gè)頂點(diǎn)都在拋物線Γ上,記四邊AB,BC,CD,DA所在直線的斜率分別為k1,k2,k3,k4,求
1
k1
-
1
k2
+
1
k3
-
1
k4
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科做)如圖,四棱錐P-ABCD的底面ABCD是直角梯形,∠ABC=90°,BC∥AD,且AB=AD=2BC,頂點(diǎn)P在底面ABCD內(nèi)的射影恰好落在AB的中點(diǎn)O上.
(1)求證:PD⊥AC;
(2)若PO=AB,求直線PD與AB所成角的余弦值;
(3)若平面APB與平面PCD所成的二面角為45°,求
PO
BC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P為雙曲線
x2
9
-
y2
16
=1
上一點(diǎn),F(xiàn)1、F2是它的兩個(gè)焦點(diǎn),當(dāng)∠F1PF2為鈍角時(shí),點(diǎn)P的縱坐標(biāo)的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2+ax+21
x+1
 (a∈R)
,若對(duì)于任意的x∈N+,f(x)≥3恒成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
36
-
y2
45
=1
上一點(diǎn)P到焦點(diǎn)F1的距離是16,則P到F2的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

y=sin(ωx+φ),ω>0與y=a函數(shù)圖象相交有相鄰三點(diǎn),從左到右為P、R、Q,若PR=3RQ,則a的值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
3
-y2=1的焦點(diǎn)到它的漸近線的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:-4<x-a<4,命題q:(x-1)(x-3)<0,且q是p的充分而不必要條件,則a的取值范圍是( 。
A、[-1,5]
B、[-1,5)
C、(-1,5]
D、(-1,5)

查看答案和解析>>

同步練習(xí)冊(cè)答案