4.如果集合A={x|ax2+2x+1=0}中只有一個(gè)元素,則a的值是( 。
A.0B.0 或1C.1D.0 或1或-1

分析 當(dāng)a=0,x=-$\frac{1}{2}$,滿足條件.當(dāng) a≠0,由△=0,求得a=1.綜合可得a的值.

解答 解:當(dāng)a=0,x=-$\frac{1}{2}$,滿足條件.
當(dāng) a≠0,由△=22-4a=0,則得a=1.
所以當(dāng)a=0,或a=1時(shí),A只有一個(gè)元素.
故選B.

點(diǎn)評(píng) 本題主要考查集合關(guān)系中參數(shù)的取值范圍問題,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某木材加工廠為了提高生產(chǎn)效率和產(chǎn)品質(zhì)量,決定添置一臺(tái)12.5萬元的新木材加工機(jī)器.若機(jī)器第x天的維護(hù)費(fèi)為x元,則該機(jī)器使用多少天能使平均每天的支出最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.函數(shù)f(x)=Asin(ωx+ϕ)+B的一部分圖象如圖所示,其中A>0,ω>0,|φ|<$\frac{π}{2}$.
(1)求函數(shù)y=f(x)解析式;
(2)求x∈[0,$\frac{π}{2}$]時(shí),函數(shù)y=f(x)的值域;
(3)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.計(jì)算:$\frac{1}{2}{log_2}3\frac{1}{2}{log_9}8$=$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知正方形ADEF所在平面與等腰梯形BCEF所在平面互相垂直,且BC=2BF=2EF=4,G為BC中點(diǎn).
(1)求證:AB∥平面DFG;
(2)求證:FG⊥平面BDE;
(3)求該多面體體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若點(diǎn)P(1,-2)位于角α終邊上,則sin2α+2cos2α=( 。
A.-$\frac{14}{5}$B.-$\frac{7}{5}$C.-2D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)集合A={1,2,3},B={2,4},全集U={0,1,2,3,4}則(∁UA)∪B={0,2,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=x3-3x,則函數(shù)h(x)=f[f(x)]-c,c∈[-2,2]的零點(diǎn)個(gè)數(shù)( 。
A.5或6個(gè)B.3或9個(gè)C.9或10個(gè)D.5或9個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知偶函數(shù)f(x)在[0,+∞)單調(diào)遞減,f(2)=0.若f(x-1)>0,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案